Menu Close

Category: Number Theory

Prove-that-x-0-lnt-t-2-1-dt-pi-2-0-arctan-xtan-d-x-1-x-lnt-t-2-1-arctant-dt-pi-8-pi-0-arctan-1-2-x-1-x-sint-dt-

Question Number 197461 by Erico last updated on 18/Sep/23 Provethat:0xlntt21dt=0π2arctan(xtanθ)dθ$$\bullet\:\:\underset{\:\frac{\mathrm{1}}{\mathrm{x}}} {\int}^{\:\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}\mathrm{arctant}\:\mathrm{dt}=\frac{\pi}{\mathrm{8}}\underset{\:\mathrm{0}} {\int}^{\:\pi} \mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{sint}\right)\mathrm{dt} \