Menu Close

Category: Operation Research

e-2-2-3-3-4-4-5-5-

Question Number 140506 by Dwaipayan Shikari last updated on 08/May/21 $${e}^{\left(\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}}+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}}−\frac{\zeta\left(\mathrm{5}\right)}{\mathrm{5}}+…\right)} \:\:\:=? \\ $$ Answered by mnjuly1970 last updated on 08/May/21 Commented by mnjuly1970 last…

x-and-y-are-two-binary-numbers-which-are-in-4-bit-2-s-complement-formate-where-x-00102-and-y-11012-clearly-y-is-a-negative-number-what-is-the-result-of-x-y-in-decimal-formate-

Question Number 9420 by tawakalitu last updated on 07/Dec/16 $$\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{two}\:\mathrm{binary}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{are}\: \\ $$$$\mathrm{in}\:\mathrm{4}\:−\:\mathrm{bit}\:\mathrm{2}'\mathrm{s}\:\mathrm{complement}\:\mathrm{formate},\: \\ $$$$\mathrm{where}\:\mathrm{x}\:=\:\mathrm{00102}\:\mathrm{and}\:\mathrm{y}\:=\:\mathrm{11012}\::\:\mathrm{clearly}, \\ $$$$\mathrm{y}\:\mathrm{is}\:\mathrm{a}\:\mathrm{negative}\:\mathrm{number}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{result} \\ $$$$\mathrm{of}\:\mathrm{x}\:+\:\mathrm{y}\:\mathrm{in}\:\mathrm{decimal}\:\mathrm{formate}. \\ $$ Terms of Service Privacy Policy…

Develop-an-algorithm-and-draw-a-flowchat-to-find-the-sum-of-numbers-from-1-100-

Question Number 9419 by tawakalitu last updated on 07/Dec/16 $$\mathrm{Develop}\:\mathrm{an}\:\mathrm{algorithm}\:\mathrm{and}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{flowchat} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{1}\:−\:\mathrm{100} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

1-1-pi-2-1-pi-1-2-1-pi-2-2-1-1-1-pi-1-2-1-pi-2-2-1-1-pi-Prove-or-disprove-

Question Number 137347 by Dwaipayan Shikari last updated on 01/Apr/21 $$\frac{\mathrm{1}}{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\pi+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\pi+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{1}+…}}}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\left(\pi+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\left(\pi+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{1}+…}}}=\frac{\mathrm{1}}{\pi}\:\: \\ $$$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{disprove}} \\ $$ Answered by MJS_new last updated…

1-1-2-2-1-3-2-4-2-1-1-2-3-1-3-3-1-4-3-4-3-1-1-2-4-1-3-4-4-4-3-4-log-2-pi-8-

Question Number 137059 by Dwaipayan Shikari last updated on 29/Mar/21 $$\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }+..}{\mathrm{4}^{\mathrm{3}} }+\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }+…}{\mathrm{4}^{\mathrm{4}} }+..=\frac{\mathrm{3}}{\mathrm{4}}{log}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{8}} \\ $$ Terms of…