Menu Close

Category: Others

Question-181394

Question Number 181394 by yaojun2t last updated on 24/Nov/22 Answered by FelipeLz last updated on 25/Nov/22 $${p}:\:{parabola} \\ $$$${d}:\:{directrix} \\ $$$${r}:\:{line}\:{passing}\:{through}\:{F} \\ $$$${s}:\:{line}\:{passing}\:{through}\:{O} \\ $$$$\begin{cases}{{F}\:=\:\left({f},\:\mathrm{0}\right)}\\{{O}\:=\:\left(\mathrm{0},\:\mathrm{0}\right)\:}\end{cases}\rightarrow\:{d}:\:{x}\:=\:−{f}…

please-help-me-solve-these-two-questions-1-A-magician-cuts-a-rope-into-two-parts-at-a-point-selected-at-random-what-is-the-probability-that-the-length-of-the-longer-rope-is-at-least-8-times-

Question Number 50299 by OTCHRRE ABDULLAI last updated on 15/Dec/18 $${please}\:{help}\:{me}\:{solve}\:{these}\:{two} \\ $$$${questions}\: \\ $$$$\mathrm{1}.\:{A}\:{magician}\:{cuts}\:{a}\:{rope}\:{into}\:{two}\: \\ $$$$\:\:{parts}\:{at}\:{a}\:{point}\:{selected}\:{at}\: \\ $$$${random}.\:{what}\:{is}\:{the}\:{probability}\:{that} \\ $$$${the}\:{length}\:{of}\:\:{the}\:{longer}\:\:{rope}\:{is}\:{at}\:{least}\: \\ $$$$\mathrm{8}\:{times}\:{the}\:{length}\:{of}\:{the}\:{shorter}\: \\ $$$${rope}.…

Question-50274

Question Number 50274 by Tawa1 last updated on 15/Dec/18 Answered by tanmay.chaudhury50@gmail.com last updated on 15/Dec/18 $$\left.\mathrm{10}\right)\int_{{a}} ^{{b}} \frac{{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \epsilon_{{r}} {r}}{dr} \\ $$$$=\frac{{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \epsilon_{{r}} }{ln}\left(\frac{{b}}{{a}}\right)…

Solve-dy-dx-e-x-sinx-y-1-y-2-1-

Question Number 181331 by Mastermind last updated on 24/Nov/22 $$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}} \left(\mathrm{sinx}\right)\left(\mathrm{y}+\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{2}\right)=−\mathrm{1} \\ $$$$ \\ $$$$. \\ $$ Answered by FelipeLz last updated on…

Solve-dy-dx-2x-y-1-0-y-0-2-

Question Number 181330 by Mastermind last updated on 24/Nov/22 $$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2x}\left(\mathrm{y}+\mathrm{1}\right)=\mathrm{0},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{2} \\ $$ Answered by FelipeLz last updated on 24/Nov/22 $$\frac{{dy}}{{dx}}+\mathrm{2}{x}\left({y}+\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}+\mathrm{2}{xy}\:=\:−\mathrm{2}{x} \\…