Menu Close

Category: Others

Advance-question-A-phone-mistakenly-got-locked-with-the-pattern-of-3-3-form-in-how-many-attempts-person-can-try-before-he-can-eventually-get-it-right-Thank-you-

Question Number 200833 by Mastermind last updated on 24/Nov/23 $$\mathrm{Advance}\:\mathrm{question} \\ $$$$ \\ $$$$\mathrm{A}\:\mathrm{phone}\:\mathrm{mistakenly}\:\mathrm{got}\:\mathrm{locked}\:\mathrm{with}\:\mathrm{the}\: \\ $$$$\mathrm{pattern}\:\mathrm{of}\:\:\mathrm{3}\:×\:\mathrm{3}\:\mathrm{form},\:\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{attempts} \\ $$$$\mathrm{person}\:\mathrm{can}\:\mathrm{try}\:\mathrm{before}\:\mathrm{he}\:\mathrm{can}\:\mathrm{eventually}\:\mathrm{get} \\ $$$$\mathrm{it}\:\mathrm{right}\:? \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\…

Question-199391

Question Number 199391 by Calculusboy last updated on 03/Nov/23 Answered by AST last updated on 03/Nov/23 $$\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{10}\Rightarrow\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left(\mathrm{5}−\mathrm{2}{x}\right)^{\mathrm{2}} =\mathrm{10} \\ $$$$\Rightarrow\mathrm{5}\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{8}\right)=\mathrm{0}\Rightarrow{x}=\mathrm{4}\:{or}\:\mathrm{2}\Rightarrow\left({x},{y}\right)=\left(\mathrm{4},\mathrm{2}\right);\left(\mathrm{2},\mathrm{6}\right) \\…

Question-199392

Question Number 199392 by Calculusboy last updated on 03/Nov/23 Answered by mr W last updated on 03/Nov/23 $$\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{53} \\ $$$$\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{13} \\…

Determine-the-continuity-ortherwise-of-the-following-functions-a-7x-2-x-3-x-2-2-b-x-2-4x-1-c-f-x-1-x-1-4-x-2-3-x-2-5-

Question Number 199312 by Mastermind last updated on 01/Nov/23 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{continuity}\:\mathrm{ortherwise}\:\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{following}\:\mathrm{functions} \\ $$$$ \\ $$$$\left.\mathrm{a}\right)\:\frac{\mathrm{7x}^{\mathrm{2}} +\mathrm{x}−\mathrm{3}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\left.\mathrm{b}\right)\:\mathrm{x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1} \\ $$$$…