Menu Close

Category: Others

Given-that-f-x-is-a-cubic-function-and-f-x-x-3-x-2-4-5x-7-a-find-one-factor-of-f-x-b-find-d-2-y-dx-2-for-f-x-c-hence-Evaluate-y-0-f-x-

Question Number 39416 by Rio Mike last updated on 06/Jul/18 $${Given}\:{that}\:{f}\left({x}\right)\:{is}\:{a}\:{cubic}\:{function} \\ $$$${and}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:\:−\:\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\:\mathrm{5}{x}\:−\:\mathrm{7} \\ $$$$\left.{a}\right)\:{find}\:{one}\:{factor}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{find}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:{for}\:{f}\left({x}\right) \\ $$$$\left.{c}\right)\:{hence}\:{Evaluate}\:\:{y}\:=\:\int_{\mathrm{0}} ^{\infty} {f}\left({x}\right).…

Question-170485

Question Number 170485 by Mastermind last updated on 24/May/22 Answered by Rasheed.Sindhi last updated on 25/May/22 $$\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} +\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{x}} =\mathrm{2}\:;\:{x}=? \\ $$$$\:\:\:\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} }=\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} }\centerdot\frac{\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{x}} }{\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{x}} }…

Question-170480

Question Number 170480 by 2407 last updated on 24/May/22 Commented by JDamian last updated on 24/May/22 $$\Sigma\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)}\:\:{is}\:{a}\:{telescoping}\:{series} \\ $$$$\Sigma\frac{\mathrm{1}}{\mathrm{3}^{{k}+\mathrm{1}} }\:\:\:{is}\:{a}\:{GP} \\ $$$${Then}\:{I}\:{guess}\:{you}\:{can}\:{solve}\:{by}\:\:{yourself} \\ $$ Commented…

Question-104940

Question Number 104940 by 175mohamed last updated on 24/Jul/20 Commented by bramlex last updated on 25/Jul/20 $$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\lfloor\:\frac{{n}+\mathrm{2}^{{i}} }{\mathrm{2}^{{i}+\mathrm{1}} }\rfloor\: \\ $$$${n}=\mathrm{1}\:,\:\lfloor\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}}\rfloor+\lfloor\frac{\mathrm{1}+\mathrm{2}}{\mathrm{4}}\rfloor+…=\:\mathrm{1} \\ $$$${n}=\mathrm{2}\:,\:\lfloor\frac{\mathrm{2}+\mathrm{1}}{\mathrm{2}}\rfloor+\lfloor\frac{\mathrm{2}+\mathrm{2}}{\mathrm{4}}\rfloor+…=\mathrm{2}…

A-body-of-weight-6-newtons-is-plased-on-a-rough-horizontal-plane-whose-coefficient-of-friction-is-3-3-the-friction-force-

Question Number 170443 by nouremad last updated on 24/May/22 $${A}\:{body}\:{of}\:{weight}\:\mathrm{6}\:{newtons}\:{is}\:{plased}\:{on}\:{a}\:{rough}\:{horizontal}\:{plane}\:{whose}\:{coefficient}\:{of}\:{friction}\:{is}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:{the}\:{friction}\:{force}\:\epsilon= \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com