Question Number 101767 by 175mohamed last updated on 04/Jul/20 Commented by mr W last updated on 04/Jul/20 $${a}\:{CD}\:{can}\:{cover}\:{a}\:{wall}\:{area}\:{of} \\ $$$$\mathrm{2}×\frac{{D}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×{D}=\frac{\sqrt{\mathrm{3}}{D}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${number}\:{of}\:{CDs}\:{needed}\:{to}\:{cover} \\ $$$$\mathrm{6}{m}×\mathrm{4}{m}\:{wall}\:{area}:…
Question Number 36218 by Rio Mike last updated on 30/May/18 $$\mathrm{proof}\:\mathrm{that}\: \\ $$$$\:\mathrm{2}\left(\sqrt{{n}}\:−\:\mathrm{1}\right)\:<\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+…+ \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{n}}}\:<\:\mathrm{2}\sqrt{\mathrm{n}} \\ $$ Commented by abdo mathsup 649 cc last updated…
Question Number 36217 by Rio Mike last updated on 30/May/18 $$\mathrm{Suppose}\:{a}_{\mathrm{1}} ,…,{a}_{{n}} ,\mathrm{are}\:\mathrm{non}−\mathrm{negative} \\ $$$$\mathrm{reals}\:\mathrm{such}\:\mathrm{that}\:{S}=\:{a}_{\mathrm{1}} +…+{a}_{{n}} < \\ $$$${proof}\:{that}\: \\ $$$$\mathrm{1}\:+\:\mathrm{S}\leqslant\:\left(\mathrm{1}\:+\:{a}_{\mathrm{1}} \right)._{…} .\left(\mathrm{1}+\:{a}_{{n}} \right)\:\leqslant\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{s}} \\…
Question Number 167275 by tabata last updated on 11/Mar/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 36191 by prof Abdo imad last updated on 30/May/18 $${let}\:{D}\:=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/{x}>\mathrm{0}\:,{y}>\mathrm{0},{x}+{y}<\mathrm{1}\right\} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int\int_{{D}} \:\:\frac{{xy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{a}>\mathrm{0}\:,{b}>\mathrm{0}\:{calculate}\:\int\int_{{D}} \:{a}^{{x}} {b}^{{y}} {dxdy} \\ $$…
Question Number 36168 by abdo mathsup 649 cc last updated on 29/May/18 $${let}\:{A}\left({t}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{sin}\left({xt}\right)}{\left(\:{x}\:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:{t}\:{from}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{extract}\:{Re}\left({A}\left({t}\right)\right)\:{and}\:{Im}\left({A}\left({t}\right)\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{cos}\left(\mathrm{3}{x}\right)}{\left({x}+\mathrm{1}+{i}\right)^{\mathrm{2}} }{dx}…
Question Number 36166 by Rio Mike last updated on 29/May/18 $$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\:\left(\mathrm{x}^{} \:+\:\frac{\mathrm{3}}{\mathrm{x}}\right)^{\mathrm{9}} \\ $$ Commented by abdo.msup.com last updated on 30/May/18 $${we}\:{have}\:\left({x}+\frac{\mathrm{3}}{{x}}\right)^{\mathrm{9}} \:=\:\sum_{{k}=\mathrm{0}}…
Question Number 36148 by Riazahmedzaib11 last updated on 29/May/18 $$ \\ $$$$\:\:\left[\overset{\mathrm{x}} {\mathrm{2}}\overset{+\:\:\mathrm{3}} {−}\mathrm{1}\:\:\:\:\overset{\mathrm{2y}+\mathrm{x}} {\mathrm{4}x6}\right]=\left[\overset{\mathrm{0}−\mathrm{7}} {\mathrm{3}}\:\mathrm{2x}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 167200 by Tawa11 last updated on 09/Mar/22 Answered by mr W last updated on 09/Mar/22 $${x}={u}\:\mathrm{cos}\:\theta\:{t} \\ $$$${y}=\mathrm{6}+{u}\:\mathrm{sin}\:\theta\:{t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${g}=\mathrm{10}\:{m}/{s}^{\mathrm{2}} \\ $$$$\left({a}\right)…
Question Number 36092 by Rio Mike last updated on 28/May/18 $$\:\mathrm{solve}\:\mathrm{for}\:\mathrm{0}°\leqslant\:\theta\:\leqslant\:\mathrm{360}°\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{cos}\left(\theta\:+\:\frac{\pi}{\mathrm{3}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Commented by abdo mathsup 649 cc last updated on 30/May/18…