Menu Close

Category: Others

Suppose-a-1-a-n-are-non-negative-reals-such-that-S-a-1-a-n-lt-proof-that-1-S-1-a-1-1-a-n-1-1-s-

Question Number 36217 by Rio Mike last updated on 30/May/18 $$\mathrm{Suppose}\:{a}_{\mathrm{1}} ,…,{a}_{{n}} ,\mathrm{are}\:\mathrm{non}−\mathrm{negative} \\ $$$$\mathrm{reals}\:\mathrm{such}\:\mathrm{that}\:{S}=\:{a}_{\mathrm{1}} +…+{a}_{{n}} < \\ $$$${proof}\:{that}\: \\ $$$$\mathrm{1}\:+\:\mathrm{S}\leqslant\:\left(\mathrm{1}\:+\:{a}_{\mathrm{1}} \right)._{…} .\left(\mathrm{1}+\:{a}_{{n}} \right)\:\leqslant\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{s}} \\…

let-D-x-y-R-2-x-gt-0-y-gt-0-x-y-lt-1-1-calculate-D-xy-x-2-y-2-dxdy-2-let-a-gt-0-b-gt-0-calculate-D-a-x-b-y-dxdy-

Question Number 36191 by prof Abdo imad last updated on 30/May/18 $${let}\:{D}\:=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/{x}>\mathrm{0}\:,{y}>\mathrm{0},{x}+{y}<\mathrm{1}\right\} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int\int_{{D}} \:\:\frac{{xy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{a}>\mathrm{0}\:,{b}>\mathrm{0}\:{calculate}\:\int\int_{{D}} \:{a}^{{x}} {b}^{{y}} {dxdy} \\ $$…

let-A-t-sin-xt-x-1-i-2-dx-with-t-from-R-2-calculate-A-t-2-extract-Re-A-t-and-Im-A-t-3-find-the-value-of-cos-3x-x-1-i-2-dx-

Question Number 36168 by abdo mathsup 649 cc last updated on 29/May/18 $${let}\:{A}\left({t}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{sin}\left({xt}\right)}{\left(\:{x}\:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:{t}\:{from}\:{R} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{extract}\:{Re}\left({A}\left({t}\right)\right)\:{and}\:{Im}\left({A}\left({t}\right)\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{cos}\left(\mathrm{3}{x}\right)}{\left({x}+\mathrm{1}+{i}\right)^{\mathrm{2}} }{dx}…

Find-the-middle-term-in-the-expansion-of-x-3-x-9-

Question Number 36166 by Rio Mike last updated on 29/May/18 $$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\:\left(\mathrm{x}^{} \:+\:\frac{\mathrm{3}}{\mathrm{x}}\right)^{\mathrm{9}} \\ $$ Commented by abdo.msup.com last updated on 30/May/18 $${we}\:{have}\:\left({x}+\frac{\mathrm{3}}{{x}}\right)^{\mathrm{9}} \:=\:\sum_{{k}=\mathrm{0}}…

2-x-3-1-4-2y-x-x6-3-0-7-2x-

Question Number 36148 by Riazahmedzaib11 last updated on 29/May/18 $$ \\ $$$$\:\:\left[\overset{\mathrm{x}} {\mathrm{2}}\overset{+\:\:\mathrm{3}} {−}\mathrm{1}\:\:\:\:\overset{\mathrm{2y}+\mathrm{x}} {\mathrm{4}x6}\right]=\left[\overset{\mathrm{0}−\mathrm{7}} {\mathrm{3}}\:\mathrm{2x}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-167200

Question Number 167200 by Tawa11 last updated on 09/Mar/22 Answered by mr W last updated on 09/Mar/22 $${x}={u}\:\mathrm{cos}\:\theta\:{t} \\ $$$${y}=\mathrm{6}+{u}\:\mathrm{sin}\:\theta\:{t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${g}=\mathrm{10}\:{m}/{s}^{\mathrm{2}} \\ $$$$\left({a}\right)…

Given-the-position-vectors-v-1-2i-2j-and-v-2-2j-show-that-the-unit-vector-in-the-direction-of-the-vector-v-1-v-2-is-1-5-i-2j-

Question Number 36091 by Rio Mike last updated on 28/May/18 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{position}\:\mathrm{vectors} \\ $$$${v}_{\mathrm{1}} =\:\mathrm{2}{i}\:−\:\mathrm{2}{j}\:{and}\:{v}_{\mathrm{2}} =\:\mathrm{2}{j}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\: \\ $$$${v}_{\mathrm{1}} −\:{v}_{\mathrm{2}\:\:\:} \mathrm{is}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\mathrm{i}−\mathrm{2j}\right) \\ $$…

i-want-to-know-how-2-2-2-2-why-not-2-2-2-2-

Question Number 36080 by Rio Mike last updated on 28/May/18 $$\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{how}\: \\ $$$$\alpha^{\mathrm{2}} +\:\beta^{\mathrm{2}} =\:\left(\alpha+\beta\right)^{\mathrm{2}} −\:\mathrm{2}\alpha\beta\:\mathrm{why}\:\mathrm{not}\: \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\:\left(\alpha+\beta\right)^{\mathrm{2}} +\:\mathrm{2}\alpha\beta? \\ $$ Commented by…