Question Number 32028 by rahul 19 last updated on 18/Mar/18 $${If}\:\frac{\mathrm{2}{z}_{\mathrm{1}} }{\mathrm{3}{z}_{\mathrm{2}} }\:{is}\:{a}\:{purely}\:{imaginary}\:{number}, \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\mid\frac{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }{{z}_{\mathrm{1}} +{z}_{\mathrm{2}} }\mid\:. \\ $$ Answered by Giannibo last…
Question Number 163095 by mahdipoor last updated on 03/Jan/22 $${what}\:{the}\:{best}\:{math}'{s}\:{app}\:{for}\:{android}\:{and}\:{pc}? \\ $$ Commented by aleks041103 last updated on 03/Jan/22 $${If}\:{Tinkutara}\:{becomes}\:{available}\:{on}\:{PC} \\ $$$${it}\:{would}\:{be}\:{undoubtfully}\:{the}\:{best}. \\ $$ Commented…
Question Number 163028 by BHOOPENDRA last updated on 03/Jan/22 Answered by aleks041103 last updated on 03/Jan/22 $$\frac{{df}}{{dn}}=\hat {{n}}.{grad}\left({f}\right)=\frac{{n}_{{x}} }{\mid{n}\mid}\:\frac{\partial{f}}{\partial{x}}+\frac{{n}_{{y}} }{\mid{n}\mid}\:\frac{\partial{f}}{\partial{y}}+\frac{{n}_{{z}} }{\mid{n}\mid}\:\:\frac{\partial{f}}{\partial{z}}= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{17}}}\:\frac{\partial{f}}{\partial{x}}\:+\frac{\mathrm{2}}{\:\sqrt{\mathrm{17}}}\:\frac{\partial{f}}{\partial{y}}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{17}}}\:\frac{\partial{f}}{\partial{z}}= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{17}}}\mathrm{24}{x}^{\mathrm{2}}…
Question Number 97478 by john santu last updated on 08/Jun/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{global}\:\mathrm{parametrization} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\left\{\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{1};\:\mathrm{x}+\mathrm{y}−\mathrm{z}=\mathrm{0}\:\right\}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31946 by gunawan last updated on 17/Mar/18 $$\mathrm{Calculate}\:\underset{{j}\leqslant{k}\leqslant{i}} {\Sigma}\:\left(−\mathrm{1}\right)^{{k}} \begin{pmatrix}{{i}}\\{{k}}\end{pmatrix}\begin{pmatrix}{{k}}\\{{j}}\end{pmatrix} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162973 by EvaNelle00 last updated on 02/Jan/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162952 by BHOOPENDRA last updated on 02/Jan/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31743 by rahul 19 last updated on 13/Mar/18 $$\:{Find}\:{the}\:{value}\:{of}\::\:\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }. \\ $$$${case}\:\mathrm{1}:\:{i}\neq{j}\neq{k}. \\ $$$${case}\:\mathrm{2}:\:{i}<{j}<{k}. \\…
Question Number 162790 by LEKOUMA last updated on 01/Jan/22 $${Calculate}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)^{\frac{\mathrm{1}}{{n}}} \\ $$ Answered by mindispower last updated on 01/Jan/22 $$=\underset{{n}\rightarrow\infty}…
Question Number 31674 by gunawan last updated on 12/Mar/18 $$\mathrm{let}\:\mathrm{p}_{{n}} \left({x}\right)\:\mathrm{polinom}\:\mathrm{Maclaurin}\:\mathrm{for} \\ $$$$\mathrm{function}\:{f}\left({x}\right)={e}^{{x}} .\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{degree}\:\mathrm{minimal}\:\mathrm{polinom}\:\left({n}\right)\:\mathrm{so} \\ $$$$\mid{e}^{{x}} −\mathrm{p}_{{n}} \left({x}\right)\mid\leqslant\:\mathrm{10}^{−\mathrm{2}} ,\:\mathrm{for}\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}? \\ $$ Terms of…