Menu Close

Category: Others

Question-163028

Question Number 163028 by BHOOPENDRA last updated on 03/Jan/22 Answered by aleks041103 last updated on 03/Jan/22 $$\frac{{df}}{{dn}}=\hat {{n}}.{grad}\left({f}\right)=\frac{{n}_{{x}} }{\mid{n}\mid}\:\frac{\partial{f}}{\partial{x}}+\frac{{n}_{{y}} }{\mid{n}\mid}\:\frac{\partial{f}}{\partial{y}}+\frac{{n}_{{z}} }{\mid{n}\mid}\:\:\frac{\partial{f}}{\partial{z}}= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{17}}}\:\frac{\partial{f}}{\partial{x}}\:+\frac{\mathrm{2}}{\:\sqrt{\mathrm{17}}}\:\frac{\partial{f}}{\partial{y}}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{17}}}\:\frac{\partial{f}}{\partial{z}}= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{17}}}\mathrm{24}{x}^{\mathrm{2}}…

Find-the-global-parametrization-of-the-curve-x-2-y-2-z-2-1-x-y-z-0-

Question Number 97478 by john santu last updated on 08/Jun/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{global}\:\mathrm{parametrization} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\left\{\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{1};\:\mathrm{x}+\mathrm{y}−\mathrm{z}=\mathrm{0}\:\right\}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Find-the-value-of-i-0-j-0-k-0-1-3-i-3-j-3-k-case-1-i-j-k-case-2-i-lt-j-lt-k-

Question Number 31743 by rahul 19 last updated on 13/Mar/18 $$\:{Find}\:{the}\:{value}\:{of}\::\:\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }. \\ $$$${case}\:\mathrm{1}:\:{i}\neq{j}\neq{k}. \\ $$$${case}\:\mathrm{2}:\:{i}<{j}<{k}. \\…

let-p-n-x-polinom-Maclaurin-for-function-f-x-e-x-How-many-degree-minimal-polinom-n-so-e-x-p-n-x-10-2-for-1-x-1-

Question Number 31674 by gunawan last updated on 12/Mar/18 $$\mathrm{let}\:\mathrm{p}_{{n}} \left({x}\right)\:\mathrm{polinom}\:\mathrm{Maclaurin}\:\mathrm{for} \\ $$$$\mathrm{function}\:{f}\left({x}\right)={e}^{{x}} .\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{degree}\:\mathrm{minimal}\:\mathrm{polinom}\:\left({n}\right)\:\mathrm{so} \\ $$$$\mid{e}^{{x}} −\mathrm{p}_{{n}} \left({x}\right)\mid\leqslant\:\mathrm{10}^{−\mathrm{2}} ,\:\mathrm{for}\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}? \\ $$ Terms of…