Menu Close

Category: Others

Ques-1-Let-G-C-5-C-25-C-625-Determine-the-number-of-elements-of-each-order-in-G-Ques-2-List-the-abelian-groups-of-order-16-and-of-order-27-up-to-Isomorphism-Ques

Question Number 194058 by Mastermind last updated on 27/Jun/23 $$\mathrm{Ques}.\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Let}\:\mathrm{G}\:=\:\mathrm{C}_{\mathrm{5}} \:×\:\mathrm{C}_{\mathrm{25}} \:×\:\mathrm{C}_{\mathrm{625}} .\:\mathrm{Determine} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{elements}\:\mathrm{of}\:\mathrm{each}\:\mathrm{order}\:\mathrm{in}\:\mathrm{G} \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{List}\:\mathrm{the}\:\mathrm{abelian}\:\mathrm{groups}\:\mathrm{of}\:\mathrm{order}\:\mathrm{16} \\ $$$$\mathrm{and}\:\mathrm{of}\:\mathrm{order}\:\mathrm{27}\:\mathrm{up}\:\mathrm{to}\:\mathrm{Isomorphism}.…

Prove-that-sin-7-1-64-35sin-21sin3-7sin5-sin7-using-1-sin-e-i-e-i-2i-and-2-cos-isin-n-cos-n-sin-n-

Question Number 193960 by pete last updated on 25/Jun/23 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{sin}^{\mathrm{7}} \theta\:=\frac{\mathrm{1}}{\mathrm{64}}\left(\mathrm{35sin}\theta\:−\mathrm{21sin3}\theta\right. \\ $$$$+\mathrm{7sin5}\theta−\mathrm{sin7}\theta\:\:\mathrm{using} \\ $$$$\:\mathrm{1}.\:\mathrm{sin}\theta\:=\frac{\mathrm{e}^{\mathrm{i}\theta} −\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2i}}\:\mathrm{and}\: \\ $$$$\mathrm{2}.\:\left(\mathrm{cos}\theta+\mathrm{isin}\theta\right)^{\mathrm{n}} \:=\:\mathrm{cos}\:\mathrm{n}\theta+\mathrm{sin}\:\mathrm{n}\theta \\ $$$$ \\ $$ Terms…

question-about-tinkutara-how-can-an-answer-be-placed-in-a-box-

Question Number 193924 by talminator2856792 last updated on 23/Jun/23 $$\:\:\underline{\mathrm{question}\:\mathrm{about}\:\mathrm{tinkutara}} \\ $$$$\:\:\mathrm{how}\:\mathrm{can}\:\mathrm{an}\:\mathrm{answer}\:\mathrm{be}\:\mathrm{placed}\:\: \\ $$$$\:\:\mathrm{in}\:\mathrm{a}\:\mathrm{box}. \\ $$ Commented by pablo1234523 last updated on 23/Jun/23 $$\begin{array}{|c|}{\mathrm{Something}\:\mathrm{like}\:\mathrm{this}?}\\\hline\end{array} \\…

Show-that-the-kernel-of-a-group-homomorhism-G-H-is-a-normal-subgroup-Hint-Check-the-existence-of-the-combination-g-1-kg-in-the-kernel-

Question Number 193921 by Mastermind last updated on 23/Jun/23 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{kernel}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group}\:\mathrm{homomorhism} \\ $$$$\theta\::\:\mathrm{G}\:\rightarrow\:\mathrm{H}\:\mathrm{is}\:\mathrm{a}\:\mathrm{normal}\:\mathrm{subgroup}. \\ $$$$\mathrm{Hint}:\:\mathrm{Check}\:\mathrm{the}\:\mathrm{existence}\:\mathrm{of}\:\mathrm{the}\:\mathrm{combination} \\ $$$$\mathrm{g}^{−\mathrm{1}} \mathrm{kg}\:\mathrm{in}\:\mathrm{the}\:\mathrm{kernel}. \\ $$ Terms of Service Privacy Policy Contact:…

Ques-12-If-Y-0-1-2-3-4-is-transversal-for-5Z-in-Z-Show-whether-or-not-Y-is-a-subgroup-of-5Z-subgroup-under-addition-of-integers-modulo-of-5-

Question Number 193896 by Mastermind last updated on 22/Jun/23 $$\mathrm{Ques}.\:\mathrm{12} \\ $$$$\mathrm{If}\:\mathrm{Y}\:=\:\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\right\}\:\mathrm{is}\:\mathrm{transversal}\:\mathrm{for}\:\mathrm{5}\mathbb{Z} \\ $$$$\mathrm{in}\:\left(\mathbb{Z},\:+\right).\:\mathrm{Show}\:\mathrm{whether}\:\mathrm{or}\:\mathrm{not}\:\mathrm{Y}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{subgroup}\:\mathrm{of}\:\mathrm{5}\mathbb{Z}\: \\ $$$$ \\ $$$$\mathrm{subgroup}\:\mathrm{under}\:\mathrm{addition}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{modulo} \\ $$$$\mathrm{of}\:\mathrm{5} \\ $$ Terms…

Ques-11-Let-H-be-a-family-of-subgroup-of-a-group-G-then-prove-that-H-is-also-a-subgroup-Ques-12-Using-GAP-find-the-elements-A-B-and-C-in-D-5-such-that-AB-BC-but

Question Number 193893 by Mastermind last updated on 22/Jun/23 $$\mathrm{Ques}.\:\mathrm{11} \\ $$$$\:\:\:\:\:\mathrm{Let}\:\left\{\mathrm{H}_{\alpha} \right\}\:\in\:\Omega\:\mathrm{be}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{subgroup}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{group}\:\mathrm{G}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\underset{\alpha=\Omega} {\cap}\mathrm{H}_{\alpha} \:\mathrm{is}\:\mathrm{also}\:\mathrm{a} \\ $$$$\mathrm{subgroup} \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{12}\: \\ $$$$\:\:\:\:\:\mathrm{Using}\:\mathrm{GAP},\:\mathrm{find}\:\mathrm{the}\:\mathrm{elements}\:\mathrm{A},\:\mathrm{B}\:\mathrm{and}\:…

Ques-Find-the-number-of-integers-in-the-set-S-1-2-3-60-which-are-not-divisible-by-2-nor-by-3-nor-by-5-Hello-

Question Number 193892 by Mastermind last updated on 22/Jun/23 $$\mathrm{Ques}. \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{in}\:\mathrm{the}\:\mathrm{set} \\ $$$$\mathrm{S}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{60}\right\}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{2}\:\mathrm{nor}\:\mathrm{by}\:\mathrm{3}\:\mathrm{nor}\:\mathrm{by}\:\mathrm{5}. \\ $$$$ \\ $$$$\mathrm{Hello} \\ $$ Answered by BaliramKumar…

Ques-8-Find-the-signum-sign-or-sgn-of-the-permutation-12345678-Hint-for-any-permutation-take-sgn-1-if-is-odd-1-if-is-even-Ques-9-Prove-that

Question Number 193871 by Mastermind last updated on 21/Jun/23 $$\mathrm{Ques}.\:\mathrm{8}\: \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{signum}\:\left(\mathrm{sign}\:\mathrm{or}\:\mathrm{sgn}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{permutation}\:\theta=\left(\mathrm{12345678}\right). \\ $$$$\mathrm{Hint}\::\:\mathrm{for}\:\mathrm{any}\:\mathrm{permutation}\:\beta,\:\mathrm{take} \\ $$$$\mathrm{sgn}\:\beta\:=\:\left\{_{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{odd}} ^{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{even}} \right. \\ $$$$ \\ $$$$ \\…

Ques-6-Let-G-be-a-group-and-let-C-c-G-c-a-a-c-a-G-Prove-that-C-is-subgroup-of-G-hence-or-otherwise-show-that-C-is-Abelian-Note-C-is-called-the-center-of-group-G-Ques-7-

Question Number 193804 by Mastermind last updated on 20/Jun/23 $$\mathrm{Ques}.\:\mathrm{6}\: \\ $$$$\:\:\:\:\:\mathrm{Let}\:\left(\mathrm{G},\:\ast\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{group}.\:\mathrm{and}\:\mathrm{let} \\ $$$$\mathrm{C}=\left\{\mathrm{c}\in\mathrm{G}\::\:\mathrm{c}\ast\mathrm{a}\:=\:\mathrm{a}\ast\mathrm{c}\:\forall\mathrm{a}\in\mathrm{G}\right\}.\:\mathrm{Prove} \\ $$$$\mathrm{that}\:\mathrm{C}\:\mathrm{is}\:\mathrm{subgroup}\:\mathrm{of}\:\mathrm{G}.\:\mathrm{hence}\:\mathrm{or}\: \\ $$$$\mathrm{otherwise}\:\mathrm{show}\:\mathrm{that}\:\mathrm{C}\:\mathrm{is}\:\mathrm{Abelian}. \\ $$$$ \\ $$$$\left[\mathrm{Note}\:\mathrm{C}\:\mathrm{is}\:\mathrm{called}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{group}\:\mathrm{G}\right] \\ $$$$ \\…