Question Number 160689 by Tawa11 last updated on 04/Dec/21 Answered by TheSupreme last updated on 04/Dec/21 $${v}_{\mathrm{1}} {t}_{\mathrm{1}} +{v}_{\mathrm{2}} {t}_{\mathrm{2}} ={d} \\ $$$${t}_{\mathrm{1}} +{t}_{\mathrm{2}} ={T}…
Question Number 29607 by tawa tawa last updated on 10/Feb/18 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sequence} \\ $$$$\left(\mathrm{i}\right)\:\:\left\{\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \:\:\:\:\:\:\:\:\left(\mathrm{ii}\right)\:\:\:\left\{\frac{\mathrm{1}}{\:\sqrt[{\mathrm{n}}]{\mathrm{2}}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \:\:\:\:\:\:\left(\mathrm{iii}\right)\:\:\:\:\left\{\frac{\mathrm{n}\:+\:\mathrm{1}}{\mathrm{n}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$ Terms of Service Privacy Policy…
Question Number 160672 by LEKOUMA last updated on 04/Dec/21 $${Calculate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{tgx}^{{m}} }{\left(\mathrm{sin}\:{x}\right)^{{n}} },\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\mathrm{cos}\:{x}−{x}}{\left({e}^{{x}} −\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} \right)} \\ $$ Commented by tounghoungko…
Question Number 95121 by i jagooll last updated on 23/May/20 Commented by bobhans last updated on 23/May/20 $$\boldsymbol{{z}}\:=\frac{\mathrm{5}}{\mathrm{2}+\boldsymbol{{i}}}\:×\:\frac{\mathrm{2}−\boldsymbol{{i}}}{\mathrm{2}−\boldsymbol{{i}}}\:=\:\frac{\mathrm{10}−\mathrm{5}\boldsymbol{{i}}}{\mathrm{4}+\mathrm{1}}\:=\:\mathrm{2}−\boldsymbol{{i}}\: \\ $$$$\boldsymbol{{argument}}\:\boldsymbol{{of}}\:\boldsymbol{{z}}\:\Rightarrow\varphi\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{−\mathrm{1}}{\mathrm{2}}\right)\: \\ $$ Answered by…
Question Number 29550 by tawa tawa last updated on 09/Feb/18 Answered by ajfour last updated on 10/Feb/18 $${selecting}\:{three}\:{fine}\:{points}\:{from} \\ $$$${graph}: \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{5}},\:\mathrm{5}\right)\:;\:\:\left(\frac{\mathrm{2}}{\mathrm{5}},\:\mathrm{6}\right)\:;\:\left(\mathrm{2},\:\mathrm{0}\right) \\ $$$${y}={y}_{\mathrm{0}} +{ut}+\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}}…
Question Number 29522 by 803jaideep@gmail.com last updated on 09/Feb/18 Commented by 803jaideep@gmail.com last updated on 09/Feb/18 $$\mathrm{40th}\:\mathrm{ques}\:\mathrm{sry} \\ $$ Commented by Tinkutara last updated on…
Question Number 95020 by 174 last updated on 22/May/20 Commented by EmericGent last updated on 22/May/20 There is no standard expression of this thing Answered by niroj last updated on 22/May/20 $$\:\mathrm{I}=\:\int\left(\mathrm{x}^{\mathrm{2}}…
Question Number 160539 by LEKOUMA last updated on 01/Dec/21 $${Prove}\:{by}\:{recurrence}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} },\:\forall{n}\geqslant\mathrm{1}. \\ $$ Answered by TheSupreme last updated on 01/Dec/21 $${n}=\mathrm{1} \\ $$$$\mathrm{1}\leqslant\mathrm{1}…
Question Number 160501 by LEKOUMA last updated on 30/Nov/21 $${Calculate} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{cos}\:\left(\frac{\Pi}{\mathrm{2}}\right){x}}{\mathrm{1}−\sqrt{{x}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{e}^{\mathrm{1}+{x}} }{\left(\mathrm{1}+{x}\right)^{{x}} }−\frac{{x}}{{e}} \\ $$ Commented by cortano last updated…
Question Number 29425 by puneet1789 last updated on 08/Feb/18 Commented by prof Abdo imad last updated on 12/Feb/18 $${f}\left({x}\right)=\lambda\:\Pi\:_{{o}=\mathrm{1}} ^{\mathrm{10}} \left({x}−{x}_{{i}} \right)\:\Rightarrow\frac{{f}^{'} \left({x}\right)}{{f}\left({x}\right)}\:=\:\sum_{{i}=\mathrm{1}} ^{\mathrm{10}} \:\frac{\mathrm{1}}{{x}−{x}_{{i}}…