Menu Close

Category: Others

Given-the-function-f-defined-by-f-x-x-2-1-x-i-state-the-domain-of-f-ii-show-that-f-x-2-x-1-x-x-lt-0-2-x-1-x-0-x-lt-2-x-2-1-x-x-2-

Question Number 94078 by Rio Michael last updated on 16/May/20 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\:\mathrm{defined}\:\mathrm{by}\:{f}\left({x}\right)\:=\:\frac{\mid{x}−\mathrm{2}\mid}{\mathrm{1}−\mid{x}\mid} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{state}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:\begin{cases}{\frac{\mathrm{2}−{x}}{\mathrm{1}+{x}}\:,\:{x}\:<\:\mathrm{0}}\\{\frac{\mathrm{2}−{x}}{\mathrm{1}−{x}},\:\mathrm{0}\:\leqslant\:{x}\:<\:\mathrm{2}}\\{\frac{{x}−\mathrm{2}}{\mathrm{1}−{x}}\:,\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Investigate}\:\mathrm{the}\:\mathrm{continuity}\:\mathrm{of}\:{f}\:\mathrm{at}\:{x}\:=\:\mathrm{2}. \\ $$ Terms of Service Privacy…

2-4-3x-2-x-2-4-dx-

Question Number 94079 by Rio Michael last updated on 16/May/20 $$\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{3}{x}−\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{4}}\:{dx}\:=\:? \\ $$ Answered by Kunal12588 last updated on 16/May/20 $$\frac{\mathrm{3}}{\mathrm{2}}\left[\int_{\mathrm{2}} ^{\mathrm{4}}…

Resolve-1-u-n-2-2u-n-1-4u-n-3-n-with-u-o-1-u-1-2-2-u-n-u-n-1-u-n-2-2sin-n-3-with-u-o-1-u-1-2-

Question Number 159560 by LEKOUMA last updated on 18/Nov/21 $${Resolve}\: \\ $$$$\mathrm{1}.\:{u}_{{n}+\mathrm{2}} −\mathrm{2}{u}_{{n}+\mathrm{1}} +\mathrm{4}{u}_{{n}} =\mathrm{3}^{{n}} \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =−\mathrm{2} \\ $$$$\mathrm{2}.\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} −{u}_{{n}−\mathrm{2}} +\mathrm{2sin}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right) \\…

Question-93787

Question Number 93787 by Ar Brandon last updated on 14/May/20 Commented by mathmax by abdo last updated on 15/May/20 $$\frac{\mathrm{4}{k}}{\mathrm{4}{k}^{\mathrm{4}} \:+\mathrm{1}}\:=\frac{\mathrm{4}{k}}{\left(\sqrt{\mathrm{2}}{k}\right)^{\mathrm{4}} +\mathrm{1}}\:=\frac{\mathrm{4}{k}}{\left(\left(\sqrt{\mathrm{2}}{k}\right)^{\mathrm{2}} \right)^{\mathrm{2}} \:+\mathrm{1}}\:=\frac{\mathrm{4}{k}}{\left(\mathrm{2}{k}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}}…