Menu Close

Category: Others

what-are-the-reasons-for-not-using-x-2c-b-b-2-4ac-as-the-quadratic-formula-i-proved-it-

Question Number 93730 by Rio Michael last updated on 14/May/20 $$\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{reasons}\:\mathrm{for}\:\mathrm{not}\:\mathrm{using}\: \\ $$$$\:{x}\:=\:\frac{\mathrm{2}{c}}{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}\:\:\mathrm{as}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{formula}?\: \\ $$$$\mathrm{i}\:\mathrm{proved}\:\mathrm{it}. \\ $$ Commented by Rasheed.Sindhi last updated on 14/May/20…

If-i-1-10-x-i-4-60-then-find-the-value-of-x-

Question Number 93691 by Aniruddha Ghosh last updated on 10/Jun/20 $$\boldsymbol{\mathrm{If}}\:\underset{\boldsymbol{{i}}\:=\:\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\left(\boldsymbol{\mathrm{x}}_{\mathrm{i}} +\mathrm{4}\right)\:=\:\mathrm{60}\:\:\boldsymbol{\mathrm{then}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\bar {\boldsymbol{{x}}}. \\ $$ Commented by hknkrc46 last updated on 15/May/20 $$\underset{{i}={k}}…

Question-159123

Question Number 159123 by BHOOPENDRA last updated on 13/Nov/21 Answered by aleks041103 last updated on 14/Nov/21 $${Def}.\:{Linear}\:{transform}\:{L}: \\ $$$$\left.\mathrm{1}\right)\:{L}\left({a}+{b}\right)={L}\left({a}\right)+{L}\left({b}\right) \\ $$$$\left.\mathrm{2}\right){L}\left(\alpha{a}\right)=\alpha{L}\left({a}\right) \\ $$$$ \\ $$$${T}\left(\begin{bmatrix}{{a}}\\{{b}}\\{{c}}\\{{d}}\end{bmatrix}+\begin{bmatrix}{{A}}\\{{B}}\\{{C}}\\{{D}}\end{bmatrix}\right)={T}\left(\begin{bmatrix}{{a}+{A}}\\{{b}+{B}}\\{{c}+{C}}\\{{d}+{D}}\end{bmatrix}\right)=\begin{bmatrix}{{a}+{A}+{b}+{B}}\\{{b}+{B}−{c}−{C}}\\{{a}+{A}+{d}+{D}}\end{bmatrix}=…

0-ln-x-3-dx-

Question Number 28006 by sorour87 last updated on 18/Jan/18 $$\int_{\mathrm{0}} ^{\infty} \left(\mathrm{ln}\:{x}\right)^{−\mathrm{3}} {dx} \\ $$ Commented by abdo imad last updated on 20/Jan/18 $${the}\:{ch}\:.{lnx}={t}\:{give}\:\:\:\int_{\mathrm{0}} ^{\infty}…

1-Prove-by-recurrence-that-for-n-28-n-11-n-2-On-subtract-the-limit-of-the-suite-n-10-n-when-n-tended-at-

Question Number 159078 by LEKOUMA last updated on 12/Nov/21 $$\left.\mathrm{1}\right)\:{Prove}\:{by}\:{recurrence}\:{that}\: \\ $$$${for}\:{n}\geqslant\mathrm{28},\:\:\:{n}!\geqslant\mathrm{11}^{{n}} \: \\ $$$$\left.\mathrm{2}\right)\:{On}\:{subtract}\:{the}\:{limit}\:{of}\:{the}\: \\ $$$${suite}\:\left(\frac{{n}!}{\mathrm{10}^{{n}} }\right)\:{when}\:{n}\:{tended}\:{at}\:+\infty \\ $$ Terms of Service Privacy Policy…

Prove-that-the-angular-momentum-H-G-of-a-rigid-body-about-its-mass-center-is-given-by-H-x-I-x-x-I-xy-y-I-xz-z-H-y-I-yx-x-I-y-y-I-yz-z-H-z-I-zx-

Question Number 27986 by ajfour last updated on 18/Jan/18 $${Prove}\:{that}\:{the}\:{angular}\:{momentum} \\ $$$$\bar {\boldsymbol{{H}}}_{{G}} \:{of}\:{a}\:{rigid}\:{body}\:{about}\:{its}\:{mass} \\ $$$${center}\:{is}\:{given}\:{by}\:: \\ $$$${H}_{{x}} =\bar {{I}}_{{x}} \omega_{{x}} −\bar {{I}}_{{xy}} \omega_{{y}} −\bar…

prove-that-the-equation-of-the-normal-to-the-rectangular-hyperbola-xy-c-2-at-the-point-P-ct-c-t-is-t-3-x-ty-c-t-4-1-the-normal-to-P-on-the-hyperbola-meets-the-x-axis-at-Q-and-the-tangent-

Question Number 93483 by Rio Michael last updated on 13/May/20 $$\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{rectangular} \\ $$$$\mathrm{hyperbola}\:{xy}\:=\:{c}^{\mathrm{2}} \:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:{P}\left({ct},\:{c}/{t}\right)\:\mathrm{is}\:{t}^{\mathrm{3}} {x}\:−{ty}\:=\:{c}\left({t}^{\mathrm{4}} −\mathrm{1}\right). \\ $$$$\mathrm{the}\:\mathrm{normal}\:\mathrm{to}\:{P}\:\:\mathrm{on}\:\mathrm{the}\:\mathrm{hyperbola}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis}\:\mathrm{at}\:{Q}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{tangent}\:\mathrm{to}\:{P}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{yaxis}\:\mathrm{at}\:{R}.\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{midpoint}\:\:\mathrm{oc}\:{QR},\:\mathrm{as}\:{P}\:\mathrm{varies}\:\mathrm{is}\:\mathrm{2}{c}^{\mathrm{2}} {xy}\:+\:{y}^{\mathrm{4}} \:=\:{c}^{\mathrm{4}} .…