Question Number 91374 by Rio Michael last updated on 30/Apr/20 $$\mathrm{A}\:\mathrm{car}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{700}\:\mathrm{kg}\:\mathrm{has}\:\mathrm{maximum}\:\mathrm{power}\:{P}\:\:,\mathrm{at}\:\mathrm{all}\:\mathrm{times}, \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:\mathrm{gravitational}\:{R}\:\mathrm{to}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\mathrm{the}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{along}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{of}\:\mathrm{angle}\:\theta\:\mathrm{where}\:\mathrm{10}\:\mathrm{sin}\theta\:=\:\mathrm{1}.\:\mathrm{The} \\ $$$$\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{up}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{R}. \\ $$$$\:\mathrm{on}\:\mathrm{level}\:\mathrm{road}\:\mathrm{the}\:\mathrm{car}\:\mathrm{has}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{20}\:\mathrm{ms}^{−\mathrm{1}} . \\…
Question Number 25828 by Tinkutara last updated on 15/Dec/17 $${Two}\:{particles}\:{A}\:{and}\:{B}\:{of}\:{equal}\:{masses} \\ $$$${m}\:{are}\:{tied}\:{with}\:{an}\:{inextensible}\:{string} \\ $$$${of}\:{length}\:\mathrm{2}{l}.\:{The}\:{initial}\:{distance} \\ $$$${between}\:{A}\:{and}\:{B}\:{is}\:{l}.\:{Particle}\:{A}\:{is} \\ $$$${given}\:{speed}\:{v}.\:{Find}\:{the}\:{speed}\:{of} \\ $$$${particle}\:{A}\:{and}\:{B}\:{just}\:{after}\:{the}\:{string} \\ $$$${becomes}\:{taut}. \\ $$ Commented…
Question Number 25825 by rita1608 last updated on 15/Dec/17 $${f}:{R}\rightarrow{R}\:{is}\:{defined}\:{by}\: \\ $$$${f}\left({x}\right)=\left\{\underset{−\mathrm{1}\:\:{if}\:{x}\notin{Z}} {\mathrm{1}}\:\:\:\mathrm{if}\:\mathrm{x}\in{Z}\right. \\ $$$${Is}\:{f}\:{continuous}\:{at}\:{x}=\mathrm{1}\:{and}\:{x}=−\frac{\mathrm{3}}{\mathrm{2}}\:\int? \\ $$$$ \\ $$ Answered by prakash jain last updated…
Question Number 25814 by rita1608 last updated on 15/Dec/17 $${find}\:\delta>\mathrm{0}\:{such}\:{that}\:\mid{f}\left({x}\right)+\mathrm{1}\mid<\mathrm{0}.\mathrm{01} \\ $$$${when}\:\mathrm{0}<\mid{x}−\mathrm{2}\mid<\delta,{where} \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}}{{x}−\mathrm{2}},{hence}\:{use}\:\varepsilon\_\delta\:\: \\ $$$${definition}\:{to}\:{show}\:{that}\: \\ $$$$\frac{{lim}}{{xtends}\:\mathrm{2}}{f}\left({x}\right)=−\mathrm{1} \\ $$ Answered by ajfour last…
Question Number 25800 by rita1608 last updated on 15/Dec/17 $${is}\:{sum}\:{of}\:{two}\:{periodic}\:{function}\:{is} \\ $$$${also}\:{periodic}\:{give}\:{reason} \\ $$ Answered by kaivan.ahmadi last updated on 15/Dec/17 $$\mathrm{yes}.\mathrm{if}\:\mathrm{T}_{\mathrm{f}} =\mathrm{T}_{\mathrm{1}} \mathrm{and}\:\mathrm{T}_{\mathrm{g}} =\mathrm{T}_{\mathrm{2}\:}…
Question Number 25780 by rita1608 last updated on 14/Dec/17 $${every}\:{periodic}\:{function}\:{is}\: \\ $$$${differentiable}.{true}\:{or}\:{false}\:{justify} \\ $$ Answered by sushmitak last updated on 14/Dec/17 $${f}\left({x}\right)=\left\{{x}\right\}\:\:\left({fraxtional}\:{part}\:{of}\:{x}\right) \\ $$$${is}\:{periodic}\:{but}\:{not}\:{differtiable} \\…
Question Number 25778 by yesaditya22@gmail.com last updated on 14/Dec/17 Answered by Rasheed.Sindhi last updated on 14/Dec/17 $$\mathrm{9}=\frac{\mathrm{35}+\mathrm{28}}{\mathrm{7}}\:,\mathrm{12}=\frac{\mathrm{45}+\mathrm{39}}{\mathrm{7}} \\ $$$$\mathrm{So}\:?=\frac{\mathrm{51}+\mathrm{68}}{\mathrm{7}}=\mathrm{17} \\ $$ Terms of Service Privacy…
Question Number 91302 by 174 last updated on 29/Apr/20 Answered by MJS last updated on 29/Apr/20 $$\int\mathrm{e}^{{x}} \frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$=\int\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx}−\mathrm{2}\int\frac{\mathrm{e}^{{x}}…
Question Number 91303 by 174 last updated on 29/Apr/20 Commented by mathmax by abdo last updated on 29/Apr/20 $${A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right){dx}\:\Rightarrow{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right){dx} \\…
Question Number 91297 by MWSuSon last updated on 29/Apr/20 $${Can}\:{someone}\:{please}\:{recommend} \\ $$$${a}\:{good}\:{advanced}\:{math}\:{textbook} \\ $$$${that}\:{covers}\:{precalculus}? \\ $$ Commented by mathmax by abdo last updated on 29/Apr/20…