Menu Close

Category: Others

soit-u-n-n-N-une-suite-a-termes-positifs-telle-que-n-N-k-1-n-u-k-3-k-1-n-u-k-2-montrer-que-n-N-u-n-n-

Question Number 21282 by youssoufab last updated on 18/Sep/17 $${soit}\:\left({u}_{{n}} \right)_{{n}\in\mathbb{N}^{\ast} } {une}\:{suite}\:{a}\:{termes}\:{positifs}\:{telle}\:{que}: \\ $$$$\forall{n}\in\mathbb{N}^{\ast} ,\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{k}} ^{\mathrm{3}} =\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{k}} \right)^{\mathrm{2}} \\ $$$${montrer}\:{que}\:\forall{n}\in\mathbb{N}^{\ast}…

Question-21276

Question Number 21276 by ketto last updated on 18/Sep/17 Answered by $@ty@m last updated on 19/Sep/17 $$\left({a}\right)\:{Given} \\ $$$${t}_{\mathrm{3}} =\mathrm{18}\:\Rightarrow\:{ar}^{\mathrm{2}} =\mathrm{18}\:\:\:\:\:\:\:−−\left(\mathrm{1}\right) \\ $$$${t}_{\mathrm{5}} =\mathrm{162}\:\Rightarrow\:{ar}^{\mathrm{4}} =\mathrm{162}\:\:−−\left(\mathrm{2}\right)…

A-particle-slides-down-a-frictionless-parabolic-y-x-2-track-A-B-C-starting-from-rest-at-point-A-Point-B-is-at-the-vertex-of-parabola-and-point-C-is-at-a-height-less-than-that-of-point-A-A

Question Number 21249 by Tinkutara last updated on 17/Sep/17 $$\mathrm{A}\:\mathrm{particle}\:\mathrm{slides}\:\mathrm{down}\:\mathrm{a}\:\mathrm{frictionless} \\ $$$$\mathrm{parabolic}\:\left({y}\:=\:{x}^{\mathrm{2}} \right)\:\mathrm{track}\:\left({A}\:−\:{B}\:−\:{C}\right) \\ $$$$\mathrm{starting}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{at}\:\mathrm{point}\:{A}.\:\mathrm{Point}\:{B} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{vertex}\:\mathrm{of}\:\mathrm{parabola}\:\mathrm{and}\:\mathrm{point}\:{C} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{less}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{point}\:{A}. \\ $$$$\mathrm{After}\:{C},\:\mathrm{the}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{freely}\:\mathrm{in}\:\mathrm{air} \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{projectile}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{reaches} \\ $$$$\mathrm{highest}\:\mathrm{point}\:\mathrm{at}\:{P},\:\mathrm{then}…

One-mole-of-a-monoatomic-real-gas-satisfies-the-equation-p-V-b-RT-where-b-is-a-constant-The-relationship-of-interatomic-potential-V-r-and-interatomic-distance-r-for-the-gas-is-given-by-

Question Number 21224 by Tinkutara last updated on 16/Sep/17 $$\mathrm{One}\:\mathrm{mole}\:\mathrm{of}\:\mathrm{a}\:\mathrm{monoatomic}\:\mathrm{real}\:\mathrm{gas} \\ $$$$\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{p}\left(\mathrm{V}\:−\:\mathrm{b}\right)\:=\:\mathrm{RT} \\ $$$$\mathrm{where}\:\mathrm{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}.\:\mathrm{The}\:\mathrm{relationship} \\ $$$$\mathrm{of}\:\mathrm{interatomic}\:\mathrm{potential}\:\mathrm{V}\left(\mathrm{r}\right)\:\mathrm{and} \\ $$$$\mathrm{interatomic}\:\mathrm{distance}\:\mathrm{r}\:\mathrm{for}\:\mathrm{the}\:\mathrm{gas}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by} \\ $$ Commented by Tinkutara…

x-2-x-2x-2-1-dx-

Question Number 86708 by jagoll last updated on 31/Mar/20 $$\int\mathrm{x}\:\sqrt{\sqrt{\mathrm{2}}\:\mathrm{x}−\sqrt{\mathrm{2x}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{dx}\: \\ $$ Answered by john santu last updated on 31/Mar/20 $$\mathrm{let}\::\:\sqrt{\mathrm{2}\:}\mathrm{x}\:−\sqrt{\mathrm{2x}^{\mathrm{2}} −\mathrm{1}}\:=\:\mathrm{u}\:\left(\mathrm{i}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{2x}^{\mathrm{2}}…

Two-particles-of-mass-m-each-are-tied-at-the-ends-of-a-light-string-of-length-2a-The-whole-system-is-kept-on-a-frictionless-horizontal-surface-with-the-string-held-tight-so-that-each-mass-is-at-a-dis

Question Number 21150 by Tinkutara last updated on 14/Sep/17 $$\mathrm{Two}\:\mathrm{particles}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{each}\:\mathrm{are}\:\mathrm{tied} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{a}\:\mathrm{light}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length}\:\mathrm{2}{a}. \\ $$$$\mathrm{The}\:\mathrm{whole}\:\mathrm{system}\:\mathrm{is}\:\mathrm{kept}\:\mathrm{on}\:\mathrm{a}\:\mathrm{frictionless} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}\:\mathrm{with}\:\mathrm{the}\:\mathrm{string}\:\mathrm{held} \\ $$$$\mathrm{tight}\:\mathrm{so}\:\mathrm{that}\:\mathrm{each}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance} \\ $$$$'{a}'\:\mathrm{from}\:\mathrm{the}\:\mathrm{center}\:{P}\:\left(\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{figure}\right).\:\mathrm{Now},\:\mathrm{the}\:\mathrm{mid}-\mathrm{point}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{string}\:\mathrm{is}\:\mathrm{pulled}\:\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{with} \\…

Figure-shows-an-arrangement-of-blocks-pulley-and-strings-Strings-and-pulley-are-massless-and-frictionless-The-relation-between-acceleration-of-the-blocks-as-shown-in-the-figure-is-

Question Number 21145 by Tinkutara last updated on 14/Sep/17 $$\mathrm{Figure}\:\mathrm{shows}\:\mathrm{an}\:\mathrm{arrangement}\:\mathrm{of}\:\mathrm{blocks}, \\ $$$$\mathrm{pulley}\:\mathrm{and}\:\mathrm{strings}.\:\mathrm{Strings}\:\mathrm{and}\:\mathrm{pulley} \\ $$$$\mathrm{are}\:\mathrm{massless}\:\mathrm{and}\:\mathrm{frictionless}.\:\mathrm{The} \\ $$$$\mathrm{relation}\:\mathrm{between}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{is} \\ $$ Commented by Tinkutara last updated…

Find-the-compression-in-the-spring-if-the-system-shown-below-is-in-equilibrium-

Question Number 21148 by Tinkutara last updated on 14/Sep/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{compression}\:\mathrm{in}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{if} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{below}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}. \\ $$ Commented by Tinkutara last updated on 14/Sep/17 Commented by…

Figure-shows-a-small-bob-of-mass-m-suspended-from-a-point-on-a-thin-rod-by-a-light-inextensible-string-of-length-l-The-rod-is-rigidly-fixed-on-a-circular-platform-The-platform-is-set-into-rotation-

Question Number 21131 by Tinkutara last updated on 13/Sep/17 $$\mathrm{Figure}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{small}\:\mathrm{bob}\:\mathrm{of}\:\mathrm{mass}\:{m} \\ $$$$\mathrm{suspended}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{a}\:\mathrm{thin}\:\mathrm{rod} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{light}\:\mathrm{inextensible}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length} \\ $$$${l}.\:\mathrm{The}\:\mathrm{rod}\:\mathrm{is}\:\mathrm{rigidly}\:\mathrm{fixed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{circular} \\ $$$$\mathrm{platform}.\:\mathrm{The}\:\mathrm{platform}\:\mathrm{is}\:\mathrm{set}\:\mathrm{into} \\ $$$$\mathrm{rotation}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{angular}\:\mathrm{speed} \\ $$$$\omega,\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{bob}\:\mathrm{loses}\:\mathrm{contact}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{vertical}\:\mathrm{rod},\:\mathrm{is} \\…

Question-21124

Question Number 21124 by Joel577 last updated on 13/Sep/17 Answered by Tinkutara last updated on 13/Sep/17 $${Here}\:{w}\:{can}\:{be}\:{taken}\:{as}\:−{x}+{iy}. \\ $$$$\therefore−{iw}={i}\left({x}−{iy}\right)={y}+{ix},\:{which}\:{is}\:{in}\:\mathrm{1}^{{st}} \\ $$$${quadrant}.\:{Hence}\:{w}\:{will}\:{be}\:{A}. \\ $$ Commented by…