Menu Close

Category: Others

two-consercutive-integers-between-which-a-root-of-the-equation-lie-are-x-2-3x-2-0-

Question Number 64788 by Rio Michael last updated on 21/Jul/19 $${two}\:{consercutive}\:{integers}\:{between}\:{which}\:{a}\:{root}\:{of}\:{the}\:{equation}\:{lie}\:{are}: \\ $$$${x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$ Commented by MJS last updated on 21/Jul/19 $$\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:{x}=−\mathrm{2}\:\mathrm{and}\:{x}=−\mathrm{1}\:\mathrm{so}\:\mathrm{there}'\mathrm{s}\:\mathrm{no} \\…

Question-64730

Question Number 64730 by Tanmay chaudhury last updated on 20/Jul/19 Answered by ajfour last updated on 20/Jul/19 $${E}=\rho{j} \\ $$$$\Rightarrow\:{E}=\frac{\rho{I}}{\mathrm{2}\pi{r}^{\mathrm{2}} } \\ $$$$\bigtriangleup{V}\:=\int{Eds}\:=\:\frac{\rho{I}}{\mathrm{2}\pi}\left(\frac{\mathrm{1}}{{D}}−\frac{\mathrm{1}}{{D}+{w}}\right) \\ $$$${i}=\frac{\bigtriangleup{V}}{{R}}=\:\frac{\rho{Iw}}{\mathrm{2}\pi{RD}\left({D}+{w}\right)}…

i-need-some-help-here-An-object-of-mass-m-falls-from-a-height-h-1-and-rebound-to-a-height-of-h-2-write-an-expression-for-its-momentum-

Question Number 64697 by Rio Michael last updated on 20/Jul/19 $${i}\:{need}\:{some}\:{help}\:{here}.\: \\ $$$$\:{An}\:{object}\:{of}\:{mass}\:\:\:{m}\:\:\:{falls}\:{from}\:{a}\:{height}\:\:{h}_{\mathrm{1}} \:{and}\:{rebound} \\ $$$${to}\:{a}\:{height}\:{of}\:{h}_{\mathrm{2}} .\:{write}\:{an}\:{expression}\:{for}\:{its}\:{momentum}. \\ $$ Answered by peter frank last updated…

1-s-log-s-2-s-3-find-inverse-laplace-

Question Number 130169 by BHOOPENDRA last updated on 23/Jan/21 $$\frac{\mathrm{1}}{{s}}{log}\frac{\left({s}−\mathrm{2}\right)}{\left({s}−\mathrm{3}\right)}\:{find}\:{inverse}\:{laplace} \\ $$ Answered by Olaf last updated on 23/Jan/21 $$\mathrm{F}\left({s}\right)\:=\:\frac{\mathrm{1}}{{s}}\mathrm{ln}\frac{{s}−\mathrm{2}}{{s}−\mathrm{3}} \\ $$$$\mathrm{F}\left({s}\right)\:=\:\frac{{s}−\mathrm{2}}{{s}}.\frac{\mathrm{ln}\left({s}−\mathrm{2}\right)}{{s}−\mathrm{2}}−\frac{{s}−\mathrm{3}}{{s}}.\frac{\mathrm{ln}\left({s}−\mathrm{3}\right)}{{s}−\mathrm{3}} \\ $$$$\mathrm{F}\left({s}\right)\:=\:\left(\frac{\mathrm{2}}{{s}}−\mathrm{1}\right)\left\{−\frac{\mathrm{1}}{{s}−\mathrm{2}}\left[\mathrm{ln}\left({s}−\mathrm{2}\right)+\gamma\right]\right\} \\…