Menu Close

Category: Others

does-anyone-know-if-charpit-s-method-for-solving-PDE-can-be-used-to-solve-second-order-pde-Also-is-it-possible-to-reduce-second-order-PDE-to-first-order-

Question Number 211315 by MWSuSon last updated on 05/Sep/24 $$\mathrm{does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{if}\:\mathrm{charpit}'\mathrm{s}\:\mathrm{method}\:\mathrm{for}\:\mathrm{solving}\: \\ $$$$\mathrm{PDE}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{second}\:\mathrm{order}\:\mathrm{pde}? \\ $$$$\mathrm{Also}\:\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{reduce}\:\mathrm{second}\:\mathrm{order}\:\mathrm{PDE}\:\mathrm{to}\:\mathrm{first}\:\mathrm{order}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-210765

Question Number 210765 by shhhh last updated on 18/Aug/24 Answered by Berbere last updated on 19/Aug/24 $$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}}\\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{9}\Rightarrow−\mathrm{6}{x}=−\mathrm{4}}\end{cases} \\ $$$${x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${y}^{\mathrm{2}}…