Menu Close

Category: Others

A-motor-car-moves-with-a-velocity-of-20m-s-on-a-rough-horizontal-road-and-covers-a-displacement-of-50m-Find-the-coefficient-of-dynamic-friction-between-the-tyre-and-the-ground-g-10m-s-2-

Question Number 13091 by tawa tawa last updated on 13/May/17 $$\mathrm{A}\:\mathrm{motor}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{20m}/\mathrm{s}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{horizontal}\:\mathrm{road}\:\mathrm{and} \\ $$$$\mathrm{covers}\:\mathrm{a}\:\mathrm{displacement}\:\mathrm{of}\:\mathrm{50m}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{dynamic}\:\mathrm{friction}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{tyre}\:\mathrm{and}\:\mathrm{the}\:\mathrm{ground}\:\:\left(\mathrm{g}\:=\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$ Answered by mrW1 last updated on 14/May/17…

An-object-is-placed-between-a-converging-lens-and-a-plane-mirror-Explain-how-two-real-images-of-the-object-may-be-produced-by-the-system-If-the-focal-length-of-the-lens-is-15cm-and-the-object-is-2

Question Number 13054 by chux last updated on 12/May/17 $$\mathrm{An}\:\mathrm{object}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{between}\:\mathrm{a}\: \\ $$$$\mathrm{converging}\:\mathrm{lens}\:\mathrm{and}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{mirror}. \\ $$$$\mathrm{Explain}\:\mathrm{how}\:\mathrm{two}\:\mathrm{real}\:\mathrm{images}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{object}\:\mathrm{may}\:\mathrm{be}\:\mathrm{produced}\:\mathrm{by}\:\mathrm{the}\: \\ $$$$\mathrm{system}. \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{focal}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lens}\:\mathrm{is}\:\mathrm{15cm} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{object}\:\mathrm{is}\:\mathrm{20cm}\:\mathrm{from}\:\mathrm{both}\: \\ $$$$\mathrm{the}\:\mathrm{lens}\:\mathrm{and}\:\mathrm{the}\:\mathrm{mirror}.\mathrm{Calculate} \\…

Two-charges-q-1-10-C-and-q-2-5-C-are-placed-on-the-axis-at-A-10-0-cm-and-20-0-cm-respectively-Determine-a-position-between-the-two-charges-where-the-electric-field-intensity-is-0-

Question Number 13049 by tawa tawa last updated on 12/May/17 $$\mathrm{Two}\:\mathrm{charges}\:\mathrm{q}_{\mathrm{1}} \:=\:\mathrm{10}\:\mu\mathrm{C}\:\mathrm{and}\:\:\mathrm{q}_{\mathrm{2}} \:=\:\mathrm{5}\:\mu\mathrm{C}\:\:\mathrm{are}\:\mathrm{placed}\:\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{at}\:\mathrm{A}\:\left(\mathrm{10},\:\mathrm{0}\right)\:\mathrm{cm} \\ $$$$\mathrm{and}\:\left(\mathrm{20},\:\mathrm{0}\right)\:\mathrm{cm}\:\:\mathrm{respectively}.\:\mathrm{Determine}\:\mathrm{a}\:\mathrm{position}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two}\:\mathrm{charges} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field}\:\mathrm{intensity}\:\mathrm{is}\:\mathrm{0}.\: \\ $$ Answered by ajfour last updated on…

f-x-y-x-1-y-1-xy-1-x-2-1-y-2-1-x-2-xy-x-y-1-1-0-x-y-1-1-is-f-x-y-continuos-at-x-y-1-1-

Question Number 414 by 123456 last updated on 25/Jan/15 $${f}\left({x},{y}\right)=\begin{cases}{\frac{\left({x}−\mathrm{1}\right)\left({y}−\mathrm{1}\right)\left({xy}−\mathrm{1}\right)+\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} −{xy}}}&{\left({x},{y}\right)\neq\left(\mathrm{1},\mathrm{1}\right)}\\{\mathrm{0}}&{\left({x},{y}\right)=\left(\mathrm{1},\mathrm{1}\right)}\end{cases} \\ $$$$\mathrm{is}\:{f}\left({x},{y}\right)\:\mathrm{continuos}\:\mathrm{at}\:\left({x},{y}\right)=\left(\mathrm{1},\mathrm{1}\right)? \\ $$ Answered by prakash jain last updated on 31/Dec/14…

Question-65951

Question Number 65951 by ketto2 last updated on 06/Aug/19 Commented by Tony Lin last updated on 06/Aug/19 $${if}\:{the}\:{son}\:{is}\:{x}\:{now}\: \\ $$$$\Rightarrow{his}\:{father}\:{is}\:\mathrm{30}+{x} \\ $$$${after}\:\mathrm{10}\:{years} \\ $$$$\Rightarrow\mathrm{40}+{x}=\mathrm{3}\left({x}+\mathrm{10}\right) \\…

1-2-3-4-5-6-7-8-x-1-2-1-4-1-6-1-8-y-i-0-2i-1-2-i-converge-

Question Number 396 by 123456 last updated on 25/Jan/15 $$\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{6}}−\frac{\mathrm{7}}{\mathrm{8}}+\centerdot\centerdot\centerdot={x} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{8}}+…={y} \\ $$$$−−−−−−−−−−−−−−−−−− \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{i}+\mathrm{1}}{\mathrm{2}^{{i}} }\:\mathrm{converge}? \\ $$ Commented by 123456 last…