Question Number 65901 by byaw last updated on 05/Aug/19 Answered by MJS last updated on 05/Aug/19 $${a}_{\mathrm{0}} \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{0}} +\mathrm{2}\alpha \\ $$$${a}_{\mathrm{8}} ={a}_{\mathrm{0}} +\mathrm{7}\alpha…
Question Number 65869 by Rio Michael last updated on 05/Aug/19 $$\int\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}}{\mathrm{4}{x}^{\mathrm{3}} +\mathrm{5}}\:{dx} \\ $$ Commented by mathmax by abdo last updated on 05/Aug/19 $${let}\:{I}\:=\int\:\:\frac{\mathrm{2}{x}^{\mathrm{2}}…
Question Number 65841 by Rio Michael last updated on 04/Aug/19 $$\:\frac{{d}}{{dx}}\left(\frac{{tan}\:^{\mathrm{2}} {x}}{\mathrm{1}\:+\:{cos}\:{x}}\right)\:=? \\ $$ Commented by som(math1967) last updated on 05/Aug/19 $${MJS}\:{Sir}\:{it}\:{is}\:{my}\:{way} \\ $$$$\frac{{d}}{{dx}}\left(\frac{{sec}^{\mathrm{2}} {x}−\mathrm{1}}{\mathrm{1}+{cosx}}\right)=\frac{{d}}{{dx}}\left\{\frac{\mathrm{1}−{cos}^{\mathrm{2}}…
Question Number 131346 by Mbeskreo last updated on 03/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65782 by Rio Michael last updated on 03/Aug/19 $$\:{Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\:\mathrm{4}\right)^{\mathrm{7}} {dx} \\ $$$${hence}\:{show}\:{that}\:\:\frac{{d}}{{dx}}\left({coshx}\right)\:=\:{sinh}\:{x} \\ $$ Commented by mathmax by abdo last…
Question Number 204 by 02@>@0 last updated on 25/Jan/15 $${x}^{\mathrm{2}} +\left({y}−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} =\mathrm{1} \\ $$ Commented by 02@>@0 last updated on 15/Dec/14 $$ \\ $$…
Question Number 65735 by Adisco last updated on 03/Aug/19 $${show}\:{that}\:{the}\:{maping}\:{define}\:{by} \\ $$$$\left({x}\:{y}\right)=\Sigma{x}\bar {{y}} \\ $$$${is}\:{an}\:{inner}\:{product} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65601 by AnjanDey last updated on 31/Jul/19 $$\mathrm{1}.\mathrm{If}\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\boldsymbol{{n}}−\mathrm{1}} \mathrm{log}\:\boldsymbol{{x}},\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\boldsymbol{{x}}^{\mathrm{2}} \frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{y}}}{\boldsymbol{{dx}}^{\mathrm{2}} }+\left(\mathrm{3}−\mathrm{2}\boldsymbol{{n}}\right)\boldsymbol{{x}}\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}+\left(\boldsymbol{{n}}−\mathrm{1}\right)^{\mathrm{2}} \boldsymbol{{y}}=\mathrm{0} \\ $$$$\mathrm{2}.\boldsymbol{\mathrm{I}}\mathrm{f}\:\frac{\mathrm{mtan}\:\left(\alpha−\theta\right)}{\mathrm{cos}\:^{\mathrm{2}} \theta}=\frac{{n}\mathrm{tan}\:\theta}{\mathrm{cos}\:^{\mathrm{2}} \left(\alpha−\theta\right)},\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\theta=\frac{\mathrm{1}}{\mathrm{2}}\left[\alpha−\mathrm{tan}^{−\mathrm{1}} \left(\frac{{n}−{m}}{{n}+{m}}\mathrm{tan}\:\alpha\right)\right] \\ $$ Commented by Prithwish…
Question Number 65593 by Rio Michael last updated on 31/Jul/19 $$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{3}{x}\:+\:\mathrm{1}\right)^{\mathrm{5}} {dx}\:= \\ $$ Commented by mathmax by abdo last updated on 31/Jul/19…
Question Number 65592 by Rio Michael last updated on 31/Jul/19 $$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{3}{x}\:+\:\mathrm{1}\right)^{\mathrm{5}} {dx}\:= \\ $$ Answered by mr W last updated on 31/Jul/19 $$\int_{\mathrm{0}}…