Menu Close

Category: Others

prove-that-there-exist-unique-intergers-p-and-s-sucb-that-a-bp-s-with-b-2-lt-s-b-2-hence-find-p-and-s-given-that-a-49-and-b-26-

Question Number 63532 by Rio Michael last updated on 05/Jul/19 $${prove}\:{that}\:{there}\:{exist}\:{unique}\:{intergers}\:{p}\:{and}\:{s}\:{sucb}\:{that} \\ $$$${a}\:=\:{bp}\:+\:{s}\:{with}\:−\frac{\mid{b}\mid}{\mathrm{2}}<\:{s}\:\leqslant\frac{\mid{b}\mid}{\mathrm{2}} \\ $$$${hence}\:{find}\:{p}\:{and}\:{s}\:{given}\:{that}\:{a}=\mathrm{49}\:{and}\:{b}=\mathrm{26} \\ $$ Answered by MJS last updated on 05/Jul/19 $${a}={bp}+{s}\:\Rightarrow\:{s}={a}−{bp}…

Given-that-z-6-2-z-6-9i-a-Use-algebra-to-show-that-the-locus-of-z-is-a-circle-stating-its-center-and-its-radius-b-sketch-the-locus-z-on-an-argand-diagram-

Question Number 63517 by Rio Michael last updated on 05/Jul/19 $$\mathrm{Given}\:\mathrm{that}\:\:\mid{z}−\mathrm{6}\mid=\mathrm{2}\mid{z}+\mathrm{6}−\mathrm{9}{i}\mid, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Use}\:\mathrm{algebra}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}, \\ $$$$\mathrm{stating}\:\mathrm{its}\:\mathrm{center}\:\mathrm{and}\:\mathrm{its}\:\mathrm{radius}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{locus}\:{z}\:\mathrm{on}\:\mathrm{an}\:\mathrm{argand}\:\mathrm{diagram}. \\ $$ Answered by MJS last updated on…

1-1-2-1-2-1-2-1-2-2-1-3-2-2-2-2-1-2-3-1-3-5-2-3-3-2-pi-2-3-4-

Question Number 129047 by Dwaipayan Shikari last updated on 12/Jan/21 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}.\mathrm{1}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}^{\mathrm{2}} .\mathrm{2}!}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}^{\mathrm{3}} .\mathrm{3}!}\right)^{\mathrm{2}} +…=\frac{\sqrt{\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$ Answered by mindispower last…

let-U-n-1-n-1-x-2-x-1-x-2-x-1-dx-n-gt-0-1-calculate-lim-n-U-n-2-find-nature-of-U-n-

Question Number 63507 by mathmax by abdo last updated on 05/Jul/19 $${let}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}\:\:\:\left({n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{nature}\:{of}\:\:\Sigma\:{U}_{{n}} \\ $$ Answered…

given-that-a-b-show-that-a-b-

Question Number 63499 by Rio Michael last updated on 04/Jul/19 $${given}\:{that}\:\:\:{a}\mid{b},\:{show}\:{that}\:−{a}\mid{b}. \\ $$ Answered by MJS last updated on 04/Jul/19 $${a}\mid{b}\:\Rightarrow\:\frac{{b}}{{a}}={c}\:\mathrm{with}\:{c}\in\mathbb{Z} \\ $$$$\Rightarrow\:−\frac{{b}}{{a}}=\left(−\mathrm{1}\right)\frac{{b}}{{a}}=\left(−\mathrm{1}\right){c}=−{c} \\ $$$${c}\in\mathbb{Z}\:\Leftrightarrow\:−{c}\in\mathbb{Z}…

s-1-2-s-2-find-the-inverse-laplace-transformtion-

Question Number 129018 by BHOOPENDRA last updated on 12/Jan/21 $$\frac{\left(\sqrt{{s}}−\mathrm{1}\right)^{\mathrm{2}} }{{s}^{\mathrm{2}} }\:{find}\:{the}\:{inverse}\:{laplace}\:{transformtion} \\ $$ Answered by Dwaipayan Shikari last updated on 12/Jan/21 $$\mathscr{L}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{s}}−\frac{\mathrm{2}}{\:{s}^{\frac{\mathrm{3}}{\mathrm{2}}} }+\frac{\mathrm{1}}{{s}^{\mathrm{2}}…

It-is-given-that-S-n-r-1-n-3r-2-3r-1-Use-the-the-formulae-of-r-1-n-r-2-and-r-1-n-r-to-show-that-S-n-n-3-sir-Forkum-Michael-

Question Number 63428 by Rio Michael last updated on 04/Jul/19 $${It}\:{is}\:{given}\:{that}\:{S}_{{n}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{3}{r}^{\mathrm{2}\:} −\mathrm{3}{r}−\mathrm{1}\right).\:{Use}\:{the}\:{the}\:{formulae} \\ $$$${of}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}\:\:} {and}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\:\:{to}\:{show}\:{that}\:{S}_{{n}} ={n}^{\mathrm{3}} . \\…

A-colony-of-bacteria-if-left-undisturbed-will-grow-at-a-rate-proportional-to-the-number-of-bacteria-P-present-at-time-t-However-a-toxic-substance-is-being-added-slowly-such-that-at-time-t-the-bacte

Question Number 63424 by Rio Michael last updated on 04/Jul/19 $${A}\:{colony}\:{of}\:{bacteria}\:{if}\:{left}\:{undisturbed}\:{will}\:{grow}\:{at}\:{a}\:{rate} \\ $$$${proportional}\:{to}\:{the}\:{number}\:{of}\:{bacteria},\:{P}\:{present}\:{at}\:{time},{t}. \\ $$$${However},{a}\:{toxic}\:{substance}\:{is}\:{being}\:{added}\:{slowly}\:{such}\:{that} \\ $$$${at}\:{time}\:{t},\:{the}\:{bacteria}\:{also}\:{die}\:{at}\:{the}\:{rate}\:\mu{Pt}\:{where}\:\mu\:{is} \\ $$$${a}\:{positive}\:{constant}. \\ $$$$\left({a}\right)\:\:{Show}\:{that}\:{at}\:{time}\:{t}\:{the}\:{rate}\:{of}\:{growth}\:{of}\:{the}\:{bacteria}\:{in} \\ $$$${the}\:{colony}\:{is}\:{governed}\:{by}\:{the}\:{differential}\:{equation} \\ $$$$\:\frac{{dP}}{{dt}}=\:\left({k}−\mu{t}\right){p}\:{where}\:{k}\:{is}\:{apositive}\:{constant}.…