Question Number 10214 by Tawakalitu ayo mi last updated on 30/Jan/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{moles}\:\mathrm{of}\:\mathrm{oxygen}\:\mathrm{atom}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{0}.\mathrm{50}\:\mathrm{mol}\:\mathrm{of}\:\mathrm{Ca}\left(\mathrm{ClO3}\right)\mathrm{2} \\ $$ Commented by sandy_suhendra last updated on 31/Jan/17 $$\mathrm{moles}\:\mathrm{of}\:\mathrm{oxygen}=\mathrm{6}×\mathrm{0}.\mathrm{50}\:\mathrm{mol}=\mathrm{3}\:\mathrm{mol} \\…
Question Number 141283 by Dwaipayan Shikari last updated on 17/May/21 $$\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}^{\mathrm{3}} }−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}^{\mathrm{3}} }+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}^{\mathrm{3}} }−\frac{\zeta\left(\mathrm{5}\right)}{\mathrm{5}^{\mathrm{3}} }+… \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10190 by ketto last updated on 29/Jan/17 Commented by FilupSmith last updated on 29/Jan/17 $$\angle{ADB}=\mathrm{45}°\:\:\mathrm{and}\:\:\:\angle{BAD}=\mathrm{90}° \\ $$$$\therefore\angle{ABD}=\mathrm{45}° \\ $$$$\therefore\:{AB}={y}={AD} \\ $$$$\mathrm{let}\:{BD}={x} \\ $$$${x}^{\mathrm{2}}…
Question Number 10184 by ketto last updated on 29/Jan/17 $${if}\:\underset{−} {{a}}\:=\mathrm{2}{i}+\mathrm{3}{j}\:.\:\underset{−} {{b}}=\mathrm{19}−\mathrm{15}{j}\:{and}\: \\ $$$$\underset{−} {{c}}\:=\mathrm{5}{i}−\mathrm{7}{j}.\:{find}\:{the}\:{value}\:{of}\:{x}\:{such} \\ $$$${that}\:{x}\underset{−} {{a}}\:+\:{y}\underset{−} {{c}}\:={b} \\ $$$$ \\ $$ Answered by…
Question Number 10157 by ketto last updated on 27/Jan/17 $${the}\:{difference}\:{of}\:{two}\:{number}\:{is}\:\mathrm{3}. \\ $$$${if}\:{the}\:{sum}\:{of}\:{their}\:{reciprocal}\:{is}\: \\ $$$$\frac{\mathrm{7}}{\mathrm{10}}\:.\:{find}\:{the}\:{numbres} \\ $$ Answered by FilupSmith last updated on 28/Jan/17 $${a}−{b}=\mathrm{3}\:\:\:\:\Rightarrow\:\:\:\:{a}=\mathrm{3}+{b} \\…
Question Number 10136 by Tawakalitu ayo mi last updated on 26/Jan/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10118 by Gaurav3651 last updated on 25/Jan/17 $${Let}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:{be}\:{a}\:{function}\:{such}\:{that} \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} +{x}^{\mathrm{2}} {f}'\left(\mathrm{1}\right)+{xf}''\left(\mathrm{2}\right)+{f}'''\left(\mathrm{3}\right) \\ $$$${for}\:{x}\in\mathbb{R}. \\ $$$$\left.\mathrm{1}\right){What}\:{is}\:{f}\left(\mathrm{1}\right)\:{equal}\:{to}? \\ $$$$\left.\mathrm{2}\right){What}\:{is}\:{f}'\left(\mathrm{1}\right)\:{equal}\:{to}? \\ $$$$\left.\mathrm{3}\right){What}\:{is}\:{f}'''\left(\mathrm{10}\right)\:{equal}\:{to}? \\ $$$${For}\:{this}\:{question}\:{consider}\:{the}\:{following}: \\…
Question Number 10069 by Tawakalitu ayo mi last updated on 23/Jan/17 $$\mathrm{A}\:\mathrm{man}\:\mathrm{can}\:\mathrm{row}\:\mathrm{a}\:\mathrm{boat}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{hr}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water}. \\ $$$$\mathrm{He}\:\mathrm{row}\:\mathrm{the}\:\mathrm{boat}\:\mathrm{2km}\:\mathrm{upstream}\:\mathrm{and}\:\mathrm{2km}\:\mathrm{back} \\ $$$$\mathrm{to}\:\mathrm{his}\:\mathrm{starting}\:\mathrm{place}\:\mathrm{in}\:\mathrm{2}\:\mathrm{hours}.\:\mathrm{How}\:\mathrm{fast}\:\mathrm{is}\: \\ $$$$\mathrm{the}\:\mathrm{stream}\:\mathrm{flowing}. \\ $$ Commented by ridwan balatif last…
Question Number 10056 by Tawakalitu ayo mi last updated on 22/Jan/17 $$\mathrm{Infrared}\:\mathrm{rays}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{1}.\mathrm{0}\:×\:\mathrm{10}^{\mathrm{13}} \:\mathrm{Hz} \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{wavelength}\:\mathrm{of}\:\mathrm{3}.\mathrm{0}\:×\:\mathrm{10}^{−\mathrm{5}} \:\mathrm{m}\:\mathrm{in}\:\mathrm{a}\:\mathrm{vacuum}. \\ $$$$\mathrm{The}\:\mathrm{wavelenth}\:\mathrm{of}\:\mathrm{X}\:\mathrm{rays}\:\mathrm{of}\:\mathrm{frequency} \\ $$$$\mathrm{5}.\mathrm{0}\:×\:\mathrm{10}^{\mathrm{16}} \:\mathrm{Hz}\:\mathrm{in}\:\mathrm{a}\:\mathrm{vacuum}\:\mathrm{will}\:\mathrm{be}\:? \\ $$ Answered by…
Question Number 10039 by Gaurav3651 last updated on 21/Jan/17 $$ \\ $$$${let}\:{f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{be}\:{twice}\:{differentiable} \\ $$$${functions}\:{on}\:\left[\mathrm{0},\mathrm{2}\right]\:{satisfying} \\ $$$${f}''\left({x}\right)={g}''\left({x}\right),\:{f}'\left(\mathrm{1}\right)=\mathrm{4},\:{g}'\left(\mathrm{1}\right)=\mathrm{6}, \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{3}\:{and}\:{g}\left(\mathrm{2}\right)=\mathrm{9}.\:{Then}\:{what}\:{is} \\ $$$${f}\left({x}\right)−{g}\left({x}\right)\:{at}\:{x}=\mathrm{4}\:{equal}\:{to}? \\ $$ Commented by prakash…