Question Number 140142 by I want to learn more last updated on 04/May/21 Commented by mr W last updated on 04/May/21 $${F}_{{W}} =\mathrm{70}+\mathrm{70}+\mathrm{70}×\mathrm{sin}\:\mathrm{40}°\approx\mathrm{185}\:{N} \\ $$…
Question Number 74570 by Learner-123 last updated on 26/Nov/19 $${lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{\left({n}\right)^{\frac{\mathrm{1}}{{n}}} }\:=\:? \\ $$ Answered by mind is power last updated on 26/Nov/19 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}^{−\frac{\mathrm{1}}{\mathrm{n}}}…
Question Number 140101 by BHOOPENDRA last updated on 04/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 9032 by ayisha last updated on 15/Nov/16 $$ \\ $$ Commented by mrW last updated on 15/Nov/16 $$\left.\mathrm{can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{use}\:\mathrm{visible}\:\mathrm{ink}?\::\right) \\ $$ Commented by FilupSmith…
Question Number 140097 by BHOOPENDRA last updated on 04/May/21 Commented by BHOOPENDRA last updated on 04/May/21 $${please}\:{me}\:{help}\:{me}\:{out}\:{this}\:…\mathrm{3},{or}\mathrm{2}{or}\mathrm{1} \\ $$$${any}\:{of}\:{one}\: \\ $$ Commented by mr W…
Question Number 9019 by tawakalitu last updated on 14/Nov/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74526 by Kunal12588 last updated on 25/Nov/19 $${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} {x}={cos}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}\right) \\ $$$${using}\:{substitution}\:{x}={cos}\:\mathrm{2}\theta \\ $$ Answered by mind is power…
Question Number 8992 by tawakalitu last updated on 11/Nov/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74513 by mathmax by abdo last updated on 25/Nov/19 $${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{xsin}\left(\mathrm{2}\theta\right)+\mathrm{1}}\:\:\left({x}\:{real}\right) \\ $$ Commented by mathmax by abdo last updated on…
Question Number 74502 by mathmax by abdo last updated on 25/Nov/19 $${let}\:{f}\left({x}\right)={e}^{−{nx}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right){determine}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:\:\:\left({n}\:{integr}\:{natural}\right) \\ $$ Commented by mathmax…