Question Number 73964 by arkanmath7@gmail.com last updated on 17/Nov/19 $${if}\:{Im}\left({f}\:'\left({z}\right)\right)\:=\mathrm{6}{x}\left(\mathrm{2}{y}−\mathrm{1}\right)\:{and}\: \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{3}−\mathrm{2}{i}\:,\:{f}\left(\mathrm{1}\right)=\mathrm{6}−\mathrm{5}{i}\: \\ $$$${find}\:{f}\left(\mathrm{1}+{i}\right)? \\ $$ Answered by mind is power last updated on 17/Nov/19…
Question Number 139489 by Rasheed.Sindhi last updated on 28/Apr/21 $$\:^{\bullet} \boldsymbol{{I}}\:\boldsymbol{{am}}\:\:\boldsymbol{{uncomcofortable}}\:\:\boldsymbol{{and}}\:\boldsymbol{{so}}\: \\ $$$$\boldsymbol{{is}}\:\:\boldsymbol{{my}}\:\boldsymbol{{writer}}. \\ $$$$ \\ $$$$\:^{\bullet} \boldsymbol{{My}}\:\boldsymbol{{writer}}\:\boldsymbol{{sometimes}}\:\boldsymbol{{regrets}} \\ $$$$\:\boldsymbol{{after}}\:\boldsymbol{{writing}}\:\boldsymbol{{me}}\:\boldsymbol{{and}}\:\:\boldsymbol{{wants}} \\ $$$$\:\boldsymbol{{to}}\:\boldsymbol{{delete}}\:\boldsymbol{{me}}. \\ $$$$ \\…
Question Number 8419 by arinto27 last updated on 10/Oct/16 $$\left.\mathrm{1}\right)\:\mathrm{diket}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{13},\:\mathrm{g}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\mathrm{x}+\mathrm{4}}{\mathrm{5}}\:\mathrm{dan}\:\mathrm{h}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{7} \\ $$$$\:\:\:\:\:\:\mathrm{nilai}\:\left(\mathrm{f}\:\mathrm{o}\:\left(\:\mathrm{g}\:\mathrm{o}\:\mathrm{h}\:\right)\right)^{−\mathrm{1}} \left(\mathrm{3}\right)=…? \\ $$$$\left.\mathrm{2}\right)\mathrm{diket}\:\mathrm{f}\left(\mathrm{x}\right)^{−\mathrm{1}} =\mathrm{4x}+\mathrm{5},\:\mathrm{g}\left(\mathrm{x}\right)=\frac{\mathrm{x}+\mathrm{4}}{\mathrm{5}}\:\mathrm{dan}\:\mathrm{h}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{x}−\mathrm{7} \\ $$$$\:\:\:\:\mathrm{nilai}\:\left(\:\mathrm{f}\:\mathrm{o}\:\mathrm{g}\:\mathrm{o}\:\mathrm{h}\:\right)^{−\mathrm{1}} \left(−\mathrm{2}\right)=….?? \\ $$$$\left.\mathrm{3}\right)\:\mathrm{jika}\:\mathrm{diket}\:\mathrm{invers}\:\mathrm{dari}\:\mathrm{fungsi}\:\mathrm{f}\:\mathrm{adalah}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{3x}^{\mathrm{2}}…
Question Number 8411 by arinto27 last updated on 10/Oct/16 $$\mathrm{ditentukan}\:\mathrm{fungsi}\:\mathrm{f}:\mathrm{R}\rightarrow\mathrm{R},\:\mathrm{g}:\mathrm{R}\rightarrow\mathrm{R}\:\mathrm{dan}\:\mathrm{h}:\mathrm{R}\rightarrow\mathrm{R}\: \\ $$$$\mathrm{dg}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}+\mathrm{4}\:}\:,\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{3x}\:\mathrm{dan}\:\mathrm{h}\left(\mathrm{x}\right)=×−\mathrm{1} \\ $$$$\mathrm{rumus}\:\left(\:\mathrm{h}\:\mathrm{o}\:\mathrm{g}\:\mathrm{o}\:\mathrm{f}\:\right)^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)=….? \\ $$$$ \\ $$$$ \\ $$ Answered by sandy_suhendra last…
Question Number 139481 by Dwaipayan Shikari last updated on 27/Apr/21 $$\mathrm{1}+\frac{\pi^{\mathrm{6}} }{\mathrm{27}.\mathrm{6}!}+\frac{\pi^{\mathrm{12}} }{\mathrm{27}^{\mathrm{2}} .\mathrm{12}!}+\frac{\pi^{\mathrm{18}} }{\mathrm{27}^{\mathrm{3}} .\mathrm{18}!}+…=\frac{{e}^{\frac{\pi}{\:\sqrt{{a}}}} +{e}^{−\frac{\pi}{\:\sqrt{{a}}}} }{\mathrm{2}{a}} \\ $$$${Find}\:{a} \\ $$ Terms of Service…
Question Number 8410 by arinto27 last updated on 10/Oct/16 Answered by ridwan balatif last updated on 10/Oct/16 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{5}−\mathrm{2x},\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{6},\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{x}−\mathrm{4} \\ $$$$\left(\mathrm{fogoh}\right)\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{g}\left(\mathrm{h}\left(\mathrm{x}\right)\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}−\mathrm{4}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{f}\left(\mathrm{x}+\mathrm{2}\right) \\…
Question Number 8407 by arinto27 last updated on 10/Oct/16 Commented by ridwan balatif last updated on 10/Oct/16 $$\mathrm{tulisannya}\:\mathrm{ga}\:\mathrm{jelas}\:\mathrm{wkkkwk} \\ $$ Terms of Service Privacy Policy…
Question Number 73918 by arkanmath7@gmail.com last updated on 16/Nov/19 $${find}\:{the}\:{Re}\left({w}\right)\:{and}\:{Im}\left({w}\right) \\ $$$$ \\ $$$${where}\:{w}\:=\:\left({sin}\:{a}\:+\:{icos}\:{a}\right)^{\left({cos}\:{a}\:+\:{isin}\:{a}\right)} \\ $$ Commented by abdomathmax last updated on 16/Nov/19 $${W}=\left({e}^{{i}\left(\frac{\pi}{\mathrm{2}}−{a}\right)} \right)^{{cosa}\:+{isina}}…
Question Number 73913 by arkanmath7@gmail.com last updated on 16/Nov/19 $${I}\:{need}\:{the}\:{sol}.\:{plz} \\ $$$${find}\:{the}\:{imaginary}\:{and}\:{real}\:{parts}\:{of} \\ $$$${log}\:{sin}\left({a}+{ib}\right)? \\ $$ Answered by Tanmay chaudhury last updated on 16/Nov/19 $${Log}\left({sinacosib}+{cosasinib}\right)…
Question Number 8373 by arinto27 last updated on 09/Oct/16 Commented by ridwan balatif last updated on 09/Oct/16 $$\mathrm{1}.\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3}^{\mathrm{x}−\mathrm{1}} \Leftrightarrow\mathrm{y}=\mathrm{3}^{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\mathrm{logy}=\mathrm{log3}^{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\mathrm{logy}=\left(\mathrm{x}−\mathrm{1}\right)\mathrm{log3} \\ $$$$\:\:\:\:\:^{\mathrm{3}}…