Question Number 73525 by arkanmath7@gmail.com last updated on 13/Nov/19 Commented by mathmax by abdo last updated on 13/Nov/19 $${z}^{\mathrm{2}} +\left(\mathrm{1}−{i}\right){z}−\mathrm{3}{i}\:=\mathrm{0} \\ $$$$\Delta=\left(\mathrm{1}−{i}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{3}{i}\right)\:=\mathrm{1}−\mathrm{2}{i}−\mathrm{1}+\mathrm{12}{i}\:=\mathrm{10}{i} \\ $$$${z}_{\mathrm{1}}…
Question Number 139014 by BHOOPENDRA last updated on 21/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 73466 by Rio Michael last updated on 12/Nov/19 $${please}\:{explain}\:{this}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\frac{{sinx}}{{x}}\:=\:\mathrm{1}\:\:{by}\:{l}'{hopitals}\:{theorem} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\:\frac{{sinx}}{{x}}\:=\:\mathrm{0}\:{by}\:{Squeez}\:{theorem} \\ $$$${is}\:{there}\:{something}\:{wrong}? \\ $$ Answered by…
Question Number 73405 by Rio Michael last updated on 11/Nov/19 $${can}\:{someone}\:{please}\:{prove}\:{the}\: \\ $$$${Chinese}\:{Remainder}\:{theorem},\:{for}\: \\ $$$${modula}\:{arithmetic}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138929 by BHOOPENDRA last updated on 20/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138927 by BHOOPENDRA last updated on 20/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 7824 by ridwan balatif last updated on 17/Sep/16 Commented by Yozzia last updated on 17/Sep/16 $${n}×{n}!=\left({n}+\mathrm{1}−\mathrm{1}\right){n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{r}!{r}=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$ Commented…
Question Number 73358 by 07032041818 last updated on 10/Nov/19 $$\mathrm{1}/\mathrm{4}{x}\mathrm{2}−\mathrm{1}/\mathrm{2}{x}−\mathrm{13}=\mathrm{0} \\ $$ Commented by MJS last updated on 10/Nov/19 $$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{clear}\:\mathrm{whether}\:\mathrm{you}\:\mathrm{mean} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{x}−\mathrm{13}=\mathrm{0} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:×\mathrm{4}…
Question Number 138891 by I want to learn more last updated on 19/Apr/21 Commented by I want to learn more last updated on 19/Apr/21 $$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}.…
Question Number 73330 by mathmax by abdo last updated on 10/Nov/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left(\mathrm{2}−{cos}\left(\mathrm{2}{x}\right)\right)}{{ln}\left(\mathrm{1}+{xsin}\left(\mathrm{3}{x}\right)\right)} \\ $$ Commented by mathmax by abdo last updated on 11/Nov/19 $${let}\:{f}\left({x}\right)=\frac{{ln}\left(\mathrm{2}−{cos}\left(\mathrm{2}{x}\right)\right)}{{ln}\left(\mathrm{1}+{xsin}\left(\mathrm{3}{x}\right)\right)}\:{we}\:{have}\:{cos}\left(\mathrm{2}{x}\right)\sim\mathrm{1}−\frac{\left(\mathrm{2}{x}\right)^{\mathrm{2}}…