Menu Close

Category: Others

Question-73255

Question Number 73255 by TawaTawa last updated on 09/Nov/19 Answered by mr W last updated on 09/Nov/19 $${there}\:{is}\:{no}\:{support}\:{on}\:{the}\:{right}\:{end} \\ $$$${of}\:{the}\:{beam}! \\ $$$$ \\ $$$$\mathrm{0}.\mathrm{4}{L}×{R}_{{Mid}} −\mathrm{0}.\mathrm{2}{L}×\mathrm{0}.\mathrm{6}{W}−\mathrm{0}.\mathrm{8}{L}×\mathrm{0}.\mathrm{15}{W}=\mathrm{0}…

P-n-1-k-n-n-P-

Question Number 7651 by FilupSmith last updated on 07/Sep/16 $${P}=\underset{{n}=\mathrm{1}} {\overset{{k}} {\prod}}{n}^{{n}} \\ $$$${P}=??? \\ $$ Commented by FilupSmith last updated on 07/Sep/16 $${P}=\mathrm{1}\left(\mathrm{2}×\mathrm{2}\right)\left(\mathrm{3}×\mathrm{3}×\mathrm{3}\right)\left(\mathrm{4}×\mathrm{4}×\mathrm{4}×\mathrm{4}\right)… \\…

0-e-x-3-1-1-x-3-3-dx-x-1-3-1-3-

Question Number 138619 by Dwaipayan Shikari last updated on 15/Apr/21 $$\int_{\mathrm{0}} ^{\infty} \left({e}^{−{x}^{\sqrt{\mathrm{3}}} } −\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{3}}} \right)^{\sqrt{\mathrm{3}}} }\right)\frac{{dx}}{{x}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\psi\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$ Commented by mnjuly1970 last updated on…

Prove-or-disprove-0-a-x-2-e-x-2-dx-1-e-a-2-a-3-1-3-2a-5-1-3-5-2a-7-1-3-5-7-2a-9-1-3-5-7-9-ad-inf-

Question Number 138608 by Dwaipayan Shikari last updated on 15/Apr/21 $${Prove}\:{or}\:{disprove} \\ $$$$\int_{\mathrm{0}} ^{{a}} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\mathrm{1}}{{e}^{{a}^{\mathrm{2}} } }\left(\frac{{a}^{\mathrm{3}} }{\mathrm{1}.\mathrm{3}}+\frac{\mathrm{2}{a}^{\mathrm{5}} }{\mathrm{1}.\mathrm{3}.\mathrm{5}}+\frac{\mathrm{2}{a}^{\mathrm{7}} }{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}+\frac{\mathrm{2}{a}^{\mathrm{9}} }{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}.\mathrm{9}}+{ad}\:{inf}..\right) \\…

Question-73030

Question Number 73030 by Tanmay chaudhury last updated on 05/Nov/19 Answered by Tanmay chaudhury last updated on 05/Nov/19 $$\int_{\mathrm{0}} ^{\mathrm{4}} \frac{{ln}\mathrm{2}}{{lnx}}−\frac{{ln}\mathrm{2}×{ln}\mathrm{2}}{{lnx}×{lnx}×{ln}\mathrm{2}}{dx} \\ $$$${ln}\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{1}}{{lnx}}−\frac{\mathrm{1}}{\left({lnx}\right)^{\mathrm{2}}…