Menu Close

Category: Others

Karanja-and-Ouma-can-do-a-certain-job-in-6-days-Karanja-alone-can-do-the-work-in-5-days-more-than-Ouma-How-many-days-can-Karanja-take-to-do-the-job-alone-

Question Number 72498 by Mr Jor last updated on 29/Oct/19 $${Karanja}\:{and}\:{Ouma}\:{can}\:{do}\:{a}\: \\ $$$${certain}\:{job}\:{in}\:\mathrm{6}\:{days}.\:{Karanja}\: \\ $$$${alone}\:{can}\:{do}\:{the}\:{work}\:{in}\:\mathrm{5}\:{days} \\ $$$${more}\:{than}\:{Ouma}.\:{How}\:{many}\: \\ $$$${days}\:{can}\:{Karanja}\:{take}\:{to}\:{do}\:{the} \\ $$$${job}\:{alone}? \\ $$ Answered by…

Hello-find-finde-0-ln-x-x-2-ax-b-dx-conditions-a-2-lt-4b-in-therm-of-x-1-x-2-root-of-X-2-aX-b-hint-Residus-theorem-applied-too-log-2-z-z-2-az-b-this-is-very-usufull-

Question Number 72430 by mind is power last updated on 28/Oct/19 $$\mathrm{Hello}\:\mathrm{find} \\ $$$$\mathrm{finde}\:\:\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{ax}+\mathrm{b}}\mathrm{dx} \\ $$$$\mathrm{conditions}\:\mathrm{a}^{\mathrm{2}} <\mathrm{4b}\:\:\: \\ $$$$\mathrm{in}\:\mathrm{therm}\:\mathrm{of}\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} \:\:\mathrm{root}\:\mathrm{of}\:\mathrm{X}^{\mathrm{2}} +\mathrm{aX}+\mathrm{b}\:…

let-g-x-ln-1-x-3-x-2-1-find-g-n-x-and-g-n-0-2-developp-g-at-integr-serie-

Question Number 72394 by mathmax by abdo last updated on 28/Oct/19 $${let}\:{g}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{3}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{g}^{\left({n}\right)} \left({x}\right){and}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{g}\:{at}\:{integr}\:{serie} \\ $$ Commented by mathmax by…

given-that-y-ln-1-cos-2-x-find-dy-dx-at-the-point-x-3pi-4-and-if-y-ln-x-2-4-find-dy-dx-at-x-1-

Question Number 72343 by Rio Michael last updated on 27/Oct/19 $${given}\:{that}\:{y}\:=\:{ln}\:\left(\:\mathrm{1}\:+\:{cos}^{\mathrm{2}} {x}\right)\:{find}\:\frac{{dy}}{{dx}\:\:}\:{at}\:{the}\:{point}\:\:{x}\:=\:\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$$${and}\:\:{if}\:\:{y}\:={ln}\left({x}^{\mathrm{2}} \:+\:\mathrm{4}\right)\:{find}\:\:\frac{{dy}}{{dx}}\:{at}\:{x}\:=\:\mathrm{1} \\ $$ Commented by mathmax by abdo last updated on…