Menu Close

Category: Others

f-n-x-x-1-x-2x-2-x-nx-n-x-n-N-f-n-x-f-n-1-x-nx-n-x-f-1-x-x-1-x-f-n-1-x-f-n-x-nx-n-x-n-Z-f-0-x-f-1-x-x-1-x

Question Number 5585 by 123456 last updated on 21/May/16 $${f}_{{n}} \left({x}\right)=\frac{{x}}{\mathrm{1}−{x}}+\frac{\mathrm{2}{x}}{\mathrm{2}−{x}}+…+\frac{{nx}}{{n}−{x}} \\ $$$${n}\in\mathbb{N}^{\ast} \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${f}_{{n}} \left({x}\right)={f}_{{n}−\mathrm{1}} \left({x}\right)+\frac{{nx}}{{n}−{x}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\frac{{x}}{\mathrm{1}−{x}} \\ $$$${f}_{{n}−\mathrm{1}} \left({x}\right)={f}_{{n}}…

1-1-2-2k-1-3-2-4-2k-1-3-5-2-4-6-2k-1-3-5-7-2-4-6-8-2k-Find-the-general-form-

Question Number 136519 by Dwaipayan Shikari last updated on 22/Mar/21 $$\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}{k}} +\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}.\mathrm{4}}\right)^{\mathrm{2}{k}} −\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)^{\mathrm{2}{k}} +\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{2}.\mathrm{4}.\mathrm{6}.\mathrm{8}}\right)^{\mathrm{2}{k}} −…. \\ $$$${Find}\:{the}\:{general}\:{form} \\ $$ Answered by mindispower last updated on…

1-z-2i-z-2i-2-z-2i-3-z-2i-4-0-find-z-z-C-

Question Number 70914 by 20190927 last updated on 09/Oct/19 $$\mathrm{1}+\left(\mathrm{z}+\mathrm{2i}\right)+\left(\mathrm{z}+\mathrm{2i}\right)^{\mathrm{2}} +\left(\mathrm{z}+\mathrm{2i}\right)^{\mathrm{3}} +\left(\mathrm{z}+\mathrm{2i}\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{z}\:,\:\mathrm{z}\in\mathrm{C} \\ $$ Commented by mathmax by abdo last updated on…

A-cylindrical-iron-rod-8cm-and-6cm-in-diameter-stands-in-a-cylindrical-tin-of-12cm-in-diameter-Water-is-poured-into-the-tin-until-it-depth-is-8cm-How-far-would-the-level-drop-when-the-rod-is-remove

Question Number 5351 by sanusihammed last updated on 10/May/16 $${A}\:{cylindrical}\:{iron}\:{rod}\:\mathrm{8}{cm}\:{and}\:\mathrm{6}{cm}\:{in}\:{diameter}\:{stands}\:{in}\:{a} \\ $$$${cylindrical}\:{tin}\:{of}\:\mathrm{12}{cm}\:{in}\:{diameter}.\:{Water}\:{is}\:{poured}\:{into}\:{the} \\ $$$${tin}\:{until}\:{it}\:{depth}\:{is}\:\mathrm{8}{cm}.\:{How}\:{far}\:{would}\:{the}\:{level}\:{drop}\:{when}\:{the}\: \\ $$$${rod}\:{is}\:{removed}\:? \\ $$ Commented by Yozzii last updated on 11/May/16…

n-1-sin-2n-1-2n-1-2-2-log-2-sin-log-sin-4-2-F-1-1-2-1-2-3-2-sin-2-sin-16-2-F-1-1-2-1-2-1-2-3-2-3-2-sin-2-Prove-or-disprove-0-lt-lt-pi-

Question Number 136420 by Dwaipayan Shikari last updated on 21/Mar/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left(\mathrm{2}{n}+\mathrm{1}\right)\theta}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\theta}{\mathrm{2}}{log}\left(\mathrm{2}\right)+{sin}\theta\frac{{log}\left({sin}\theta\right)}{\mathrm{4}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};{sin}^{\mathrm{2}} \theta\right)+\frac{{sin}\theta}{\mathrm{16}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};{sin}^{\mathrm{2}} \theta\right) \\ $$$${Prove}\:{or}\:{disprove}\:\:\:\:\:\mathrm{0}<\theta<\pi \\ $$ Answered…

Question-5314

Question Number 5314 by sanusihammed last updated on 06/May/16 Commented by prakash jain last updated on 08/May/16 $$\mathrm{R}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{R}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{parallel},\:\mathrm{so}\:\mathrm{equivalent} \\ $$$$\mathrm{resistance}\:=\frac{\mathrm{R}_{\mathrm{2}} ×\mathrm{R}_{\mathrm{3}} }{\mathrm{R}_{\mathrm{2}} +\mathrm{R}_{\mathrm{3}}…