Menu Close

Category: Others

cos-1-43-3-pi-1-2-cos-1-43-3-2pi-2-2-cos-1-43-3-3pi-3-2-api-Find-a-

Question Number 136104 by Dwaipayan Shikari last updated on 18/Mar/21 $$\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\pi}{\mathrm{1}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{2}\pi}{\mathrm{2}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{3}\pi}{\mathrm{3}^{\mathrm{2}} }+…={a}\pi \\ $$$${Find}\:{a} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

The-sign-for-is-not-congruent-to-is-present-on-the-keyboard-But-its-opposite-is-congruent-to-doesn-t-exist-Although-by-adding-two-signs-and-we-can-make-the-required-sign-b

Question Number 5013 by Rasheed Soomro last updated on 01/Apr/16 $${The}\:{sign}\:{for}\:“\:{is}\:{not}\:{congruent}\:{to}'' \\ $$$${is}\:{present}\:{on}\:{the}\:{keyboard}\:\left(\ncong\right). \\ $$$${But}\:{its}\:{opposite}\:“\:{is}\:{congruent}\:{to}'' \\ $$$${doesn}'{t}\:{exist}. \\ $$$${Although}\:{by}\:{adding}\:{two}\:{signs}\:'='\:{and}\:'\sim' \\ $$$${we}\:{can}\:{make}\:{the}\:{required}\:{sign}\:\left(\overset{\sim} {=}\right)\:{but} \\ $$$${I}\:{think}\:{it}\:{should}\:{be}\:{directly}\:{present}. \\…

sin-2-1-3-sin-2-2-2-3-sin-3-2-3-3-pi-b-1-a-b-pi-b-Find-a-b-

Question Number 136070 by Dwaipayan Shikari last updated on 18/Mar/21 $$\frac{{sin}\left(\sqrt{\mathrm{2}}\right)}{\mathrm{1}^{\mathrm{3}} }+\frac{{sin}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)}{\mathrm{2}^{\mathrm{3}} }+\frac{{sin}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)}{\mathrm{3}^{\mathrm{3}} }+…=\frac{\pi^{{b}} +\mathrm{1}}{\:{a}\sqrt{{b}}}−\frac{\pi}{{b}} \\ $$$${Find}\:{a}−{b} \\ $$ Answered by mnjuly1970 last updated on…

is-possible-to-proof-that-f-x-e-cx-obey-f-x-y-f-x-f-y-using-e-x-n-0-x-n-n-

Question Number 4962 by 123456 last updated on 27/Mar/16 $$\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{proof}\:\mathrm{that} \\ $$$${f}\left({x}\right)={e}^{{cx}} \\ $$$$\mathrm{obey} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{using} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\…

x-cos-sin-y-sin-cos-z-sin-r-x-e-x-y-e-y-z-e-z-r-r-r-

Question Number 4922 by 123456 last updated on 22/Mar/16 $$\begin{cases}{{x}\left(\rho,\theta,\psi\right)=\rho\:\mathrm{cos}\:\theta+\psi\:\mathrm{sin}\:\theta}\\{{y}\left(\rho,\theta,\psi\right)=\rho\:\mathrm{sin}\:\theta+\psi\:\mathrm{cos}\:\theta}\\{{z}\left(\rho,\theta,\psi\right)=\psi\:\mathrm{sin}\:\theta}\end{cases} \\ $$$$\boldsymbol{{r}}\left(\rho,\theta,\psi\right)={x}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{x}} +{y}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{y}} +{z}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{z}} \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\rho}=? \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\theta}=? \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\psi}=? \\ $$ Commented by prakash…

f-x-0-is-a-even-function-or-a-odd-function-

Question Number 4905 by 123456 last updated on 20/Mar/16 $${f}\left({x}\right)=\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{even}\:\mathrm{function}\:\mathrm{or}\:\mathrm{a}\:\mathrm{odd}\:\mathrm{function}? \\ $$ Commented by Yozzii last updated on 20/Mar/16 $${This}\:{is}\:{indeterminate}\:{I}\:{think}\:{since}\:{f}\left({x}\right)=\mathrm{0} \\ $$$${satisfies}\:{both}\:{f}\left({x}\right)=−{f}\left({x}\right)=\mathrm{0} \\ $$$${and}\:{f}\left(−{x}\right)=\mathrm{0}={f}\left({x}\right). \\…

Question-135976

Question Number 135976 by I want to learn more last updated on 17/Mar/21 Answered by mr W last updated on 17/Mar/21 $$\frac{{x}}{\mathrm{sin}\:\mathrm{90}°}=\frac{\mathrm{2}}{\mathrm{sin}\:\angle{ADC}}\:\:\:\:…\left({i}\right) \\ $$$$\frac{\mathrm{sin}\:\mathrm{30}°}{\mathrm{3}}=\frac{\mathrm{sin}\:\angle{BDC}}{{y}}\:\:\:…\left({ii}\right) \\…

f-x-x-x-lt-0-xf-x-1-1-x-0-5-5-f-x-dx-

Question Number 4883 by 123456 last updated on 19/Mar/16 $${f}\left({x}\right)=\begin{cases}{{x}}&{{x}<\mathrm{0}}\\{{xf}\left({x}−\mathrm{1}\right)+\mathrm{1}}&{{x}\geqslant\mathrm{0}}\end{cases} \\ $$$$\underset{−\mathrm{5}} {\overset{\mathrm{5}} {\int}}{f}\left({x}\right){dx}=? \\ $$ Commented by prakash jain last updated on 19/Mar/16 $$\mathrm{0}\leqslant{x}<\mathrm{1}\:\Rightarrow\left({x}−\mathrm{1}\right)<\mathrm{0}…