Question Number 136104 by Dwaipayan Shikari last updated on 18/Mar/21 $$\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\pi}{\mathrm{1}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{2}\pi}{\mathrm{2}^{\mathrm{2}} }+\frac{{cos}\left(\mathrm{1}+\sqrt{\frac{\mathrm{43}}{\mathrm{3}}}\right)\mathrm{3}\pi}{\mathrm{3}^{\mathrm{2}} }+…={a}\pi \\ $$$${Find}\:{a} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 5013 by Rasheed Soomro last updated on 01/Apr/16 $${The}\:{sign}\:{for}\:“\:{is}\:{not}\:{congruent}\:{to}'' \\ $$$${is}\:{present}\:{on}\:{the}\:{keyboard}\:\left(\ncong\right). \\ $$$${But}\:{its}\:{opposite}\:“\:{is}\:{congruent}\:{to}'' \\ $$$${doesn}'{t}\:{exist}. \\ $$$${Although}\:{by}\:{adding}\:{two}\:{signs}\:'='\:{and}\:'\sim' \\ $$$${we}\:{can}\:{make}\:{the}\:{required}\:{sign}\:\left(\overset{\sim} {=}\right)\:{but} \\ $$$${I}\:{think}\:{it}\:{should}\:{be}\:{directly}\:{present}. \\…
Question Number 136070 by Dwaipayan Shikari last updated on 18/Mar/21 $$\frac{{sin}\left(\sqrt{\mathrm{2}}\right)}{\mathrm{1}^{\mathrm{3}} }+\frac{{sin}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)}{\mathrm{2}^{\mathrm{3}} }+\frac{{sin}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)}{\mathrm{3}^{\mathrm{3}} }+…=\frac{\pi^{{b}} +\mathrm{1}}{\:{a}\sqrt{{b}}}−\frac{\pi}{{b}} \\ $$$${Find}\:{a}−{b} \\ $$ Answered by mnjuly1970 last updated on…
Question Number 4962 by 123456 last updated on 27/Mar/16 $$\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{proof}\:\mathrm{that} \\ $$$${f}\left({x}\right)={e}^{{cx}} \\ $$$$\mathrm{obey} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right) \\ $$$$\mathrm{using} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\…
Question Number 4922 by 123456 last updated on 22/Mar/16 $$\begin{cases}{{x}\left(\rho,\theta,\psi\right)=\rho\:\mathrm{cos}\:\theta+\psi\:\mathrm{sin}\:\theta}\\{{y}\left(\rho,\theta,\psi\right)=\rho\:\mathrm{sin}\:\theta+\psi\:\mathrm{cos}\:\theta}\\{{z}\left(\rho,\theta,\psi\right)=\psi\:\mathrm{sin}\:\theta}\end{cases} \\ $$$$\boldsymbol{{r}}\left(\rho,\theta,\psi\right)={x}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{x}} +{y}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{y}} +{z}\left(\rho,\theta,\psi\right)\:\boldsymbol{{e}}_{{z}} \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\rho}=? \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\theta}=? \\ $$$$\frac{\partial\boldsymbol{{r}}}{\partial\psi}=? \\ $$ Commented by prakash…
Question Number 4905 by 123456 last updated on 20/Mar/16 $${f}\left({x}\right)=\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{even}\:\mathrm{function}\:\mathrm{or}\:\mathrm{a}\:\mathrm{odd}\:\mathrm{function}? \\ $$ Commented by Yozzii last updated on 20/Mar/16 $${This}\:{is}\:{indeterminate}\:{I}\:{think}\:{since}\:{f}\left({x}\right)=\mathrm{0} \\ $$$${satisfies}\:{both}\:{f}\left({x}\right)=−{f}\left({x}\right)=\mathrm{0} \\ $$$${and}\:{f}\left(−{x}\right)=\mathrm{0}={f}\left({x}\right). \\…
Question Number 135976 by I want to learn more last updated on 17/Mar/21 Answered by mr W last updated on 17/Mar/21 $$\frac{{x}}{\mathrm{sin}\:\mathrm{90}°}=\frac{\mathrm{2}}{\mathrm{sin}\:\angle{ADC}}\:\:\:\:…\left({i}\right) \\ $$$$\frac{\mathrm{sin}\:\mathrm{30}°}{\mathrm{3}}=\frac{\mathrm{sin}\:\angle{BDC}}{{y}}\:\:\:…\left({ii}\right) \\…
Question Number 4897 by 123456 last updated on 19/Mar/16 $${f}\left({x}\right)=\mathrm{10sin}\:{x} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{1} \\ $$$${h}\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1} \\ $$$${h}\left({g}\left({f}\left({x}\right)\right)\right)=\mathrm{0} \\ $$$${x}=??? \\ $$ Commented by prakash…
Question Number 4889 by 123456 last updated on 19/Mar/16 $${f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3} \\ $$$${g}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1} \\ $$$${h}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{7} \\ $$$${f}\left({g}\left({h}\left({x}\right)\right)\right)=\mathrm{0},{x}=? \\ $$ Answered by Yozzii last…
Question Number 4883 by 123456 last updated on 19/Mar/16 $${f}\left({x}\right)=\begin{cases}{{x}}&{{x}<\mathrm{0}}\\{{xf}\left({x}−\mathrm{1}\right)+\mathrm{1}}&{{x}\geqslant\mathrm{0}}\end{cases} \\ $$$$\underset{−\mathrm{5}} {\overset{\mathrm{5}} {\int}}{f}\left({x}\right){dx}=? \\ $$ Commented by prakash jain last updated on 19/Mar/16 $$\mathrm{0}\leqslant{x}<\mathrm{1}\:\Rightarrow\left({x}−\mathrm{1}\right)<\mathrm{0}…