Menu Close

Category: Others

4-99-7-999-11-999999-

Question Number 128126 by Agnibhoo last updated on 04/Jan/21 $$\:\frac{\mathrm{4}}{\mathrm{99}}\:+\:\frac{\mathrm{7}}{\mathrm{999}}\:+\:\frac{\mathrm{11}}{\mathrm{999999}}\:=\:? \\ $$ Answered by Geovanek last updated on 04/Jan/21 $$\frac{\mathrm{4}}{\mathrm{99}}\:+\:\frac{\mathrm{7}}{\mathrm{99}}\:+\:\frac{\mathrm{11}}{\mathrm{999999}}\:=\:{X} \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that} \\ $$$$\frac{\mathrm{999999}}{\mathrm{99}}\:=\:\mathrm{10101}\:\:\:\boldsymbol{\mathrm{AND}} \\…

1-1-16-5-2-16-2-2-5-2-9-2-16-3-3-5-2-9-2-13-2-16-4-4-pi-2-3-4-F-1-1-4-1-4-1-1-Prove-The-above-relation-Where-F-1-n-0-n-

Question Number 128122 by Dwaipayan Shikari last updated on 04/Jan/21 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{2}} .\mathrm{2}!}+\frac{\mathrm{5}^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{3}} .\mathrm{3}!}+\frac{\mathrm{5}^{\mathrm{2}} .\mathrm{9}^{\mathrm{2}} .\mathrm{13}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{4}} .\mathrm{4}!}+…=\frac{\sqrt{\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)}={F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{4}},\mathrm{1};\mathrm{1}\right) \\ $$$${Prove}\:{The}\:{above}\:{relation} \\…

1-2-3-4-100-

Question Number 128112 by AgnibhoMukhopadhyay last updated on 04/Jan/21 $$\:\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:…..\:+\:\mathrm{100}\:=\:? \\ $$ Answered by Olaf last updated on 04/Jan/21 $$\mathrm{A}\:\left({n}+\mathrm{1}\right)×\left({n}+\mathrm{1}\right)\:\mathrm{squared}\:\mathrm{chess}\:\mathrm{board} \\ $$$$\mathrm{contains}\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{squares}. \\ $$$$…

Question-128093

Question Number 128093 by BHOOPENDRA last updated on 04/Jan/21 Answered by Dwaipayan Shikari last updated on 04/Jan/21 $$\mathscr{L}\left({e}^{\mathrm{2}{t}} +\mathrm{4}{t}^{\mathrm{3}} −\mathrm{2}{sin}\mathrm{3}{t}+\mathrm{3}{cos}\mathrm{3}{t}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{\mathrm{2}{t}−{st}} +\int_{\mathrm{0}}…

8-i-3-2i-If-the-expression-above-is-rewritten-in-the-form-a-bi-where-a-and-b-are-real-numbers-what-is-the-value-of-a-A-2-B-8-3-C-3-D-11-3

Question Number 128083 by AgnibhoMukhopadhyay last updated on 04/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{8}\:−\:{i}}{\mathrm{3}\:−\:\mathrm{2}{i}} \\ $$$$\:\mathrm{If}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{above}\:\mathrm{is}\:\mathrm{rewritten}\: \\ $$$$\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{a}\:+\:{bi},\:\mathrm{where}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are} \\ $$$$\:\mathrm{real}\:\mathrm{numbers},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}? \\ $$$$\:\mathrm{A}.\:\mathrm{2} \\ $$$$\:\mathrm{B}.\:\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\:\mathrm{C}.\:\mathrm{3} \\ $$$$\:\mathrm{D}.\:\frac{\mathrm{11}}{\mathrm{3}} \\…

99-99-9801-999-999-998001-9999-9999-99980001-99999-99999-999999-999999-

Question Number 128030 by Agnibhoo last updated on 03/Jan/21 $$\:\mathrm{99}\:×\:\mathrm{99}\:=\:\mathrm{9801} \\ $$$$\:\mathrm{999}\:×\:\mathrm{999}\:=\:\mathrm{998001} \\ $$$$\:\mathrm{9999}\:×\:\mathrm{9999}\:=\:\mathrm{99980001} \\ $$$$\:\mathrm{99999}\:×\:\mathrm{99999}\:=\:? \\ $$$$\:\mathrm{999999}\:×\:\mathrm{999999}\:=\:? \\ $$ Answered by Geovanek last updated…

If-347-9823-3-P-4Q-7R-9-10-8-100-2-S-3-T-Then-find-the-value-of-P-Q-R-S-T-

Question Number 128008 by AgnibhoMukhopadhyay last updated on 03/Jan/21 $$\mathrm{If}\:\mathrm{347}.\mathrm{9823}\:=\:\frac{\mathrm{3}}{{P}}\:+\:\mathrm{4}{Q}\:+\:\mathrm{7}{R}\:+\:\frac{\mathrm{9}}{\mathrm{10}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{8}}{\mathrm{100}}\:+\:\frac{\mathrm{2}}{{S}}\:+\:\frac{\mathrm{3}}{{T}} \\ $$$${Then}\:{find}\:{the}\:{value}\:{of}\: \\ $$$${P}\:+\:{Q}\:+\:{R}\:+\:{S}\:+\:{T} \\ $$ Answered by MJS_new last updated on 03/Jan/21…

x-a-x-b-x-c-x-z-

Question Number 128001 by Agnibhoo last updated on 03/Jan/21 $$\left(\mathrm{x}\:−\:\mathrm{a}\right)\:\left(\mathrm{x}\:−\:\mathrm{b}\right)\:\left(\mathrm{x}\:−\:\mathrm{c}\right)\:…..\:\left(\mathrm{x}\:−\:\mathrm{z}\right)\:=\:? \\ $$ Answered by prakash1956 last updated on 03/Jan/21 $$\left(\mathrm{x}\:−\:\mathrm{a}\right)\:\left(\mathrm{x}\:−\:\mathrm{b}\right)\:\left(\mathrm{x}\:−\:\mathrm{c}\right)\:…..\:\left(\mathrm{x}\:−\:\mathrm{z}\right)\:=\:? \\ $$$$=\mathrm{0}\:\:\:\left(\mathrm{x}−\mathrm{x}\right)\:\mathrm{term}\:\mathrm{involved}\:\mathrm{in}\:\mathrm{this} \\ $$$$ \\…

Some-Values-n-e-pin-2-pi-1-4-3-4-n-e-2pin-2-pi-1-4-3-4-6-4-2-1-4-2-n-e-6pin-2-pi-1-4-3-4-1-1-4-3-1-

Question Number 127982 by Dwaipayan Shikari last updated on 03/Jan/21 $${Some}\:{Values}\:.. \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\pi{n}^{\mathrm{2}} } =\frac{\pi^{\frac{\mathrm{1}}{\mathrm{4}}} }{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\pi{n}^{\mathrm{2}} } =\frac{\pi^{\frac{\mathrm{1}}{\mathrm{4}}} }{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\:\frac{\sqrt[{\mathrm{4}}]{\mathrm{6}+\mathrm{4}\sqrt{\mathrm{2}}}}{\mathrm{2}}…