Question Number 70310 by Rio Michael last updated on 03/Oct/19 $${please}\:{help}\:{me}\:{find}\:{the}\:{term}\:{independent}\:{of}\:{x} \\ $$$${in}\:{the}\:{expansion}\:{of}\: \\ $$$$\:\:\:\:\:\:\left({x}\:+\:\frac{\mathrm{3}}{{x}}\right)^{−\mathrm{12}\:} \\ $$ Commented by mr W last updated on 03/Oct/19…
Question Number 4750 by 123456 last updated on 04/Mar/16 $${f}_{{n}} \left({x}\right)=\begin{cases}{\mathrm{1}\:\:\:\:{n}=\mathrm{1}}\\{\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)…\left(\mathrm{1}−{x}^{{n}} \right)}{\left(\mathrm{1}−\mathrm{2}{x}\right)…\left(\mathrm{1}−{nx}\right)}\:\:\:\:{n}\in\mathbb{N},{n}>\mathrm{1}}\end{cases} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}_{{n}} \left({x}\right)=? \\ $$$${n}>\mathrm{1},{f}\left({x}\right)=\mathrm{0},{x}=? \\ $$ Commented by prakash jain…
Question Number 135808 by oustmuchiya@gmail.com last updated on 16/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 4728 by 123456 last updated on 01/Mar/16 $$\mathrm{if}\:\mid{x}^{\mathrm{2}} −{c}\mid\leqslant\epsilon,\:{c}\in\mathbb{R},{c}\geqslant\mathrm{0} \\ $$$$\mathrm{does}? \\ $$$$\mid{x}−\sqrt{{c}}\mid\leqslant\epsilon \\ $$ Commented by Yozzii last updated on 01/Mar/16 $$\mid\left({x}−\sqrt{{c}}\right)\mid\mid{x}+\sqrt{{c}}\mid\leqslant\epsilon…
Question Number 4724 by 123456 last updated on 29/Feb/16 $$\mathrm{how}\:\mathrm{the}\:\mathrm{gravity}\:\mathrm{work}\:\mathrm{on}\:\mathrm{a}\:\mathbb{R}^{\mathrm{4}} \:\mathrm{universe}? \\ $$$$\mathrm{does}\:\mathrm{any}\:\mathbb{R}^{\mathrm{3}} \:\mathrm{people}\:\mathrm{will}\:\mathrm{be}\:\mathrm{atracted}\:\mathrm{by} \\ $$$$\mathrm{some}\:“\mathrm{ghost}''\:\mathrm{object}? \\ $$ Commented by Yozzii last updated on 29/Feb/16…
Question Number 135798 by ajfour last updated on 16/Mar/21 Commented by ajfour last updated on 16/Mar/21 $${When}\:{you}\:{can}\:{see}\:\mathrm{9}\:{of}\:{them}\:{in} \\ $$$${each}\:{row},\:{instead}\:{of}\:\mathrm{8}\:{in} \\ $$$${each}\:{row},\:{the}\:{image}\:{turns} \\ $$$${holographic}! \\ $$…
Question Number 4716 by 123456 last updated on 28/Feb/16 $$\mathrm{lets}\:{f}:\left[\mathrm{0},\mathrm{T}\right]\rightarrow\mathbb{R} \\ $$$$\mathrm{does}? \\ $$$$\frac{\mathrm{1}}{\mathrm{T}}\underset{\mathrm{0}} {\overset{\mathrm{T}} {\int}}{f}\left({t}\right){dt}\leqslant\sqrt{\frac{\mathrm{1}}{\mathrm{T}}\underset{\mathrm{0}} {\overset{\mathrm{T}} {\int}}\left[{f}\left({t}\right)\right]^{\mathrm{2}} {dt}}\leqslant\frac{\mathrm{1}}{\mathrm{T}}\underset{\mathrm{0}} {\overset{\mathrm{T}} {\int}}\mid{f}\left({t}\right)\mid{dt} \\ $$ Commented by…
Question Number 4714 by 123456 last updated on 28/Feb/16 $$\mathrm{lets}\:{f}:\left[\mathrm{0},\mathrm{T}\right]\rightarrow\mathbb{R}\:\mathrm{such}\:\mathrm{that} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{T}} {\int}}\left[{f}\left({t}\right)\right]^{\mathrm{2}} {dt}<+\infty \\ $$$$\omega\mathrm{T}=\mathrm{2}\pi \\ $$$$\mathrm{if}\:{a}\left({n}\right)=\frac{\mathrm{2}}{\mathrm{T}}\underset{\mathrm{0}} {\overset{\mathrm{T}} {\int}}{f}\left({t}\right)\mathrm{cos}\left(\omega{nt}\right){dt} \\ $$$$\mathrm{and}\:{b}\left({n}\right)=\frac{\mathrm{2}}{\mathrm{T}}\underset{\mathrm{0}} {\overset{\mathrm{T}} {\int}}{f}\left({t}\right)\mathrm{sin}\:\left(\omega{nt}\right){dt}…
Question Number 135757 by Dwaipayan Shikari last updated on 15/Mar/21 $$\frac{\mathrm{1}.\mathrm{1}}{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{2}}{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)\mathrm{3}}{\mathrm{2}^{\mathrm{4}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}\right)\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }+… \\ $$ Commented by Dwaipayan Shikari last updated on 15/Mar/21…
Question Number 4634 by sanusihammed last updated on 16/Feb/16 $${Y}^{\mathrm{1}} \:=\:{Asin}\left(\mathrm{6}{x}\:−\:\mathrm{10}{t}\right) \\ $$$$ \\ $$$${Y}^{\mathrm{2}} \:=\:{Asin}\left(\mathrm{3}{x}\:−\:\mathrm{9}{t}\right) \\ $$$$ \\ $$$${Show}\:{that}\:{the}\:{medium}\:{is}\:{dispersive}.\:{If}\:{this}\:{two}\:{waves}\:\: \\ $$$${superpose}\:{obtain}\:{both}\:{the}\:{phase}\:{velocity}\:{and}\:{group}\:{velocity}\: \\ $$$${of}\:{a}\:{combine}\:{disturbance}. \\…