Menu Close

Category: Others

Question-4584

Question Number 4584 by MrGreg last updated on 08/Feb/16 $$ \\ $$ Answered by FilupSmith last updated on 09/Feb/16 $$\:\:\:\:{S}=\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+\mathrm{64}−… \\ $$$$+{S}=\mathrm{0}+\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+\mathrm{64}−… \\ $$$$\mathrm{2}{S}=\mathrm{1}+\left(−\mathrm{1}+\mathrm{2}−\mathrm{4}+\mathrm{8}−\mathrm{16}+…\right) \\…

n-0-5-2-2n-1-2n-1-2-pi-2-24-1-12-log-2-2-5-

Question Number 135638 by Dwaipayan Shikari last updated on 14/Mar/21 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{\mathrm{5}}−\mathrm{2}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{24}}−\frac{\mathrm{1}}{\mathrm{12}}{log}^{\mathrm{2}} \left(\mathrm{2}+\sqrt{\mathrm{5}}\right) \\ $$ Terms of Service Privacy Policy Contact:…

n-1-5-12n-2-4-18-2-12n-8-4-18-2-10-4-324-22-4-324-34-4-324-46-4-324-58-4-324-4-4-324-16-4-324-28-4-324-40-4-324-52-4-324-

Question Number 70069 by tw000001 last updated on 01/Oct/19 $$\underset{{n}=\mathrm{1}} {\overset{\mathrm{5}} {\prod}}\frac{\left(\mathrm{12}{n}−\mathrm{2}\right)^{\mathrm{4}} +\mathrm{18}^{\mathrm{2}} }{\left(\mathrm{12}{n}−\mathrm{8}\right)^{\mathrm{4}} +\mathrm{18}^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{10}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{22}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{34}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{46}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{58}^{\mathrm{4}} +\mathrm{324}\right)}{\left(\mathrm{4}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{16}^{\mathrm{4}} +\mathrm{324}\right)\left(\mathrm{28}^{\mathrm{4}}…

a-b-c-cos-a-b-2-cos-c-2-

Question Number 70051 by Aditya789 last updated on 30/Sep/19 $$\frac{{a}+{b}}{{c}}=\frac{{cos}\left(\frac{{a}−{b}}{\mathrm{2}}\right)}{{cos}\frac{{c}}{\mathrm{2}}} \\ $$ Answered by $@ty@m123 last updated on 01/Oct/19 $${LHS}=\frac{{a}+{b}}{{c}}=\frac{\mathrm{sin}\:{A}+\mathrm{sin}\:{B}}{\mathrm{sin}\:{C}} \\ $$$$=\frac{\mathrm{2sin}\:\frac{{A}+{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}}{\mathrm{2sin}\:\frac{{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{sin}\:\frac{\pi−{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}}{\mathrm{sin}\:\frac{{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}} \\…

lets-a-and-b-be-two-sequence-such-that-A-lim-n-a-n-B-lim-n-b-n-exist-and-are-finite-lets-c-be-a-new-sequence-c-n-p-n-a-n-q-n-b-n-p-q-N-0-1-p-n-q-n-1-d-N-d-N-d-d-

Question Number 4507 by 123456 last updated on 03/Feb/16 $$\mathrm{lets}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{two}\:\mathrm{sequence}\:\mathrm{such}\:\mathrm{that} \\ $$$${A}=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{a}_{{n}} \\ $$$${B}=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{b}_{{n}} \\ $$$$\mathrm{exist}\:\mathrm{and}\:\mathrm{are}\:\mathrm{finite},\:\mathrm{lets} \\ $$$${c}\:\mathrm{be}\:\mathrm{a}\:\mathrm{new}\:\mathrm{sequence} \\ $$$${c}_{{n}} ={p}\left({n}\right){a}_{\sigma\left({n}\right)} +{q}\left({n}\right){b}_{\mu\left({n}\right)} \\…