Question Number 70022 by naka3546 last updated on 30/Sep/19 $${Find}\:\:\:{all}\:\:{pairs}\:\:{of}\:\:\:\left({p},\:{q}\right)\:\:{integer}\left({s}\right)\:\:{such}\:\:{that} \\ $$$${p}^{\mathrm{3}} \:−\:{q}^{\mathrm{5}} \:\:=\:\:\left({p}\:+\:{q}\right)^{\mathrm{2}} \\ $$ Commented by MJS last updated on 30/Sep/19 $${p}=\mathrm{0}\:{q}=\mathrm{0} \\…
Question Number 70017 by Shamim last updated on 30/Sep/19 $$\mathrm{Solution}- \\ $$$$\mathrm{log}_{\mathrm{8}} \mathrm{x}+\mathrm{log}_{\mathrm{4}} \mathrm{x}+\mathrm{log}_{\mathrm{2}} \mathrm{x}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{8}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{4}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{2}}…
Question Number 4443 by 123456 last updated on 27/Jan/16 $$\mathrm{find}\:\mathrm{all}\:{x},{y}\in\mathbb{Z}\:\mathrm{such}\:\mathrm{that} \\ $$$${x}\in\left[\mathrm{0},\mathrm{50}\right] \\ $$$${y}\in\left[\mathrm{0},\mathrm{50}\right] \\ $$$${x}+{y}={k},{k}\in\left[\mathrm{0},\mathrm{50}\right] \\ $$$$\frac{{x}}{{x}+{y}}=\frac{\mathrm{99}}{\mathrm{100}} \\ $$ Answered by RasheedSindhi last updated…
Question Number 4440 by Rasheed Soomro last updated on 27/Jan/16 $$\mathrm{Market}\:\mathrm{is}\:\mathrm{slow}\:\mathrm{nowadays}!\: \\ $$$$\mathrm{I}\:\mathrm{mean}\:\mathrm{Questioning}/\mathrm{Answering}/\mathrm{Commenting} \\ $$$$\mathrm{is}\:\mathrm{slow}.\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{reasons}? \\ $$$$\:\:^{\bullet} \mathrm{Winter}\:\mathrm{season}? \\ $$$$\:\:^{\bullet} \mathrm{Shortage}\:\mathrm{of}\:\mathrm{problems}? \\ $$$$\:\:^{\bullet} \mathrm{Are}\:\mathrm{we}\:\:\mathrm{not}\:\mathrm{remained}\:\mathrm{interested}\:\mathrm{more}? \\…
Question Number 4392 by Rasheed Soomro last updated on 18/Jan/16 $$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{n}}} =?\:\:\:,\:\mathrm{x}>\mathrm{1} \\ $$ Commented by Yozzii last updated on 18/Jan/16 $$ \\…
Question Number 4378 by madscientist last updated on 14/Jan/16 $${what}\:{are}\:{the}\:{formulas}\:{for}\:{functions} \\ $$$$\Phi\left({x}\right)\:{and}\:\Psi\left({x}\right)? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135432 by 777316 last updated on 13/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 69894 by Rio Michael last updated on 28/Sep/19 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{3}} −\mathrm{2}}{dx} \\ $$ Commented by abdo mathsup 649 cc last updated on 29/Sep/19…
Question Number 135431 by 777316 last updated on 13/Mar/21 Answered by SEKRET last updated on 13/Mar/21 $$\boldsymbol{\mathrm{F}}\left(\boldsymbol{\mathrm{a}}\right)=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{ax}}^{\mathrm{2}} +\mathrm{1}\right)}{\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)}\:\boldsymbol{\mathrm{dx}}\:\:\:\:\:\:\boldsymbol{\mathrm{a}}=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{F}}\:'\left(\boldsymbol{\mathrm{a}}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{ax}}^{\mathrm{2}}…
Question Number 4297 by 123456 last updated on 07/Jan/16 $$\mathrm{lets} \\ $$$${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R},\forall{x}\geqslant{y}\Rightarrow{f}\left({x}\right)\geqslant{f}\left({y}\right) \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$$\mathrm{if} \\ $$$$\forall{x}\in\left[\mathrm{0},+\infty\right),{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right) \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{L},\mathrm{L}\:\mathrm{is}\:\mathrm{finite} \\ $$$$\mathrm{does} \\ $$$$\underset{{x}\rightarrow+\infty}…