Question Number 4511 by madscientist last updated on 04/Feb/16 $${is}\:{this}\:{true}? \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{t}\:} {dt}=\mathrm{1}\: \\ $$$${if}\:{so}\:{how}? \\ $$$$ \\ $$ Commented by FilupSmith last…
Question Number 4507 by 123456 last updated on 03/Feb/16 $$\mathrm{lets}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{two}\:\mathrm{sequence}\:\mathrm{such}\:\mathrm{that} \\ $$$${A}=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{a}_{{n}} \\ $$$${B}=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{b}_{{n}} \\ $$$$\mathrm{exist}\:\mathrm{and}\:\mathrm{are}\:\mathrm{finite},\:\mathrm{lets} \\ $$$${c}\:\mathrm{be}\:\mathrm{a}\:\mathrm{new}\:\mathrm{sequence} \\ $$$${c}_{{n}} ={p}\left({n}\right){a}_{\sigma\left({n}\right)} +{q}\left({n}\right){b}_{\mu\left({n}\right)} \\…
Question Number 70035 by TawaTawa last updated on 30/Sep/19 Commented by TawaTawa last updated on 30/Sep/19 Commented by mr W last updated on 30/Sep/19 $${let}\:{x}={XP}…
Question Number 70030 by Joel122 last updated on 30/Sep/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\frac{\mathrm{1}}{{n}}\:+\:\mathrm{1}}{−{n}^{\mathrm{2}} } \\ $$ Answered by mind is power last updated on…
Question Number 70022 by naka3546 last updated on 30/Sep/19 $${Find}\:\:\:{all}\:\:{pairs}\:\:{of}\:\:\:\left({p},\:{q}\right)\:\:{integer}\left({s}\right)\:\:{such}\:\:{that} \\ $$$${p}^{\mathrm{3}} \:−\:{q}^{\mathrm{5}} \:\:=\:\:\left({p}\:+\:{q}\right)^{\mathrm{2}} \\ $$ Commented by MJS last updated on 30/Sep/19 $${p}=\mathrm{0}\:{q}=\mathrm{0} \\…
Question Number 70017 by Shamim last updated on 30/Sep/19 $$\mathrm{Solution}- \\ $$$$\mathrm{log}_{\mathrm{8}} \mathrm{x}+\mathrm{log}_{\mathrm{4}} \mathrm{x}+\mathrm{log}_{\mathrm{2}} \mathrm{x}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{8}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{4}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{2}}…
Question Number 4443 by 123456 last updated on 27/Jan/16 $$\mathrm{find}\:\mathrm{all}\:{x},{y}\in\mathbb{Z}\:\mathrm{such}\:\mathrm{that} \\ $$$${x}\in\left[\mathrm{0},\mathrm{50}\right] \\ $$$${y}\in\left[\mathrm{0},\mathrm{50}\right] \\ $$$${x}+{y}={k},{k}\in\left[\mathrm{0},\mathrm{50}\right] \\ $$$$\frac{{x}}{{x}+{y}}=\frac{\mathrm{99}}{\mathrm{100}} \\ $$ Answered by RasheedSindhi last updated…
Question Number 4440 by Rasheed Soomro last updated on 27/Jan/16 $$\mathrm{Market}\:\mathrm{is}\:\mathrm{slow}\:\mathrm{nowadays}!\: \\ $$$$\mathrm{I}\:\mathrm{mean}\:\mathrm{Questioning}/\mathrm{Answering}/\mathrm{Commenting} \\ $$$$\mathrm{is}\:\mathrm{slow}.\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{reasons}? \\ $$$$\:\:^{\bullet} \mathrm{Winter}\:\mathrm{season}? \\ $$$$\:\:^{\bullet} \mathrm{Shortage}\:\mathrm{of}\:\mathrm{problems}? \\ $$$$\:\:^{\bullet} \mathrm{Are}\:\mathrm{we}\:\:\mathrm{not}\:\mathrm{remained}\:\mathrm{interested}\:\mathrm{more}? \\…
Question Number 4392 by Rasheed Soomro last updated on 18/Jan/16 $$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{n}}} =?\:\:\:,\:\mathrm{x}>\mathrm{1} \\ $$ Commented by Yozzii last updated on 18/Jan/16 $$ \\…
Question Number 4378 by madscientist last updated on 14/Jan/16 $${what}\:{are}\:{the}\:{formulas}\:{for}\:{functions} \\ $$$$\Phi\left({x}\right)\:{and}\:\Psi\left({x}\right)? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com