Menu Close

Category: Others

Question-135431

Question Number 135431 by 777316 last updated on 13/Mar/21 Answered by SEKRET last updated on 13/Mar/21 $$\boldsymbol{\mathrm{F}}\left(\boldsymbol{\mathrm{a}}\right)=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{ax}}^{\mathrm{2}} +\mathrm{1}\right)}{\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)}\:\boldsymbol{\mathrm{dx}}\:\:\:\:\:\:\boldsymbol{\mathrm{a}}=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{F}}\:'\left(\boldsymbol{\mathrm{a}}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{ax}}^{\mathrm{2}}…

lets-f-0-R-x-y-f-x-f-y-g-0-R-if-x-0-f-x-g-x-f-2x-lim-x-f-x-L-L-is-finite-does-lim-x-f-x-g-x-0-

Question Number 4297 by 123456 last updated on 07/Jan/16 $$\mathrm{lets} \\ $$$${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R},\forall{x}\geqslant{y}\Rightarrow{f}\left({x}\right)\geqslant{f}\left({y}\right) \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$$\mathrm{if} \\ $$$$\forall{x}\in\left[\mathrm{0},+\infty\right),{f}\left({x}\right)\leqslant{g}\left({x}\right)\leqslant{f}\left(\mathrm{2}{x}\right) \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{L},\mathrm{L}\:\mathrm{is}\:\mathrm{finite} \\ $$$$\mathrm{does} \\ $$$$\underset{{x}\rightarrow+\infty}…

Question-69829

Question Number 69829 by TawaTawa last updated on 28/Sep/19 Commented by TawaTawa last updated on 28/Sep/19 $$\mathrm{The}\:\mathrm{question}\:\mathrm{says}\:\mathrm{do}\:\mathrm{not}\:\mathrm{use}\:\mathrm{Newton}'\mathrm{s}\:\mathrm{law}\:\mathrm{and}\:\mathrm{kinematic} \\ $$ Commented by TawaTawa last updated on…

0-1-1-6x-15x-2-20x-3-15x-4-6x-5-x-6-1-6-dx-pi-3-Or-0-1-1-kx-k-k-1-2-x-2-k-k-1-k-2-6-x-3-1-k-dx-pi-ksin-pi-k-

Question Number 135366 by Dwaipayan Shikari last updated on 12/Mar/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{\mathrm{6}{x}−\mathrm{15}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{3}} −\mathrm{15}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{5}} −{x}^{\mathrm{6}} }}{dx}=\frac{\pi}{\mathrm{3}} \\ $$$${Or} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{{k}}]{{kx}−\frac{{k}\left({k}−\mathrm{1}\right)}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{{k}\left({k}−\mathrm{1}\right)\left({k}−\mathrm{2}\right)}{\mathrm{6}}{x}^{\mathrm{3}}…

find-dy-dx-at-the-point-0-3-when-2x-2-y-y-4xy-2-2x-3-

Question Number 69766 by Rio Michael last updated on 27/Sep/19 $${find}\:\:\frac{{dy}}{{dx}}\:\:{at}\:{the}\:{point}\:\:\left(\mathrm{0},\mathrm{3}\right)\:\:{when}\:\:\mathrm{2}{x}^{\mathrm{2}} {y}\:+\:{y}\:+\:\mathrm{4}{xy}^{\mathrm{2}} \:=\:\mathrm{2}{x}\:+\:\mathrm{3}\: \\ $$ Commented by kaivan.ahmadi last updated on 27/Sep/19 $${f}\left({x},{y}\right)=\mathrm{2}{x}^{\mathrm{2}} {y}+{y}+\mathrm{4}{xy}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}=\mathrm{0}…