Menu Close

Category: Others

f-n-1-x-x-f-n-x-g-n-1-x-g-n-x-x-h-n-1-x-h-n-x-h-n-x-f-0-x-g-0-x-h-0-x-x-if-f-x-lim-n-f-n-x-g-x-lim-n-g-n-x-h-x-lim-n-h-n-x-does-f-x-g-x-h-x-

Question Number 4025 by 123456 last updated on 26/Dec/15 $${f}_{{n}+\mathrm{1}} \left({x}\right)={x}^{{f}_{{n}} \left({x}\right)} \\ $$$${g}_{{n}+\mathrm{1}} \left({x}\right)=\left[{g}_{{n}} \left({x}\right)\right]^{{x}} \\ $$$${h}_{{n}+\mathrm{1}} \left({x}\right)=\left[{h}_{{n}} \left({x}\right)\right]^{{h}_{{n}} \left({x}\right)} \\ $$$${f}_{\mathrm{0}} \left({x}\right)={g}_{\mathrm{0}} \left({x}\right)={h}_{\mathrm{0}}…

1-2-2-1-1-2-2-2-2-1-1-2-1-3-2-2-3-1-1-2-1-3-1-4-2-2-4-Find-in-a-closed-form-

Question Number 134984 by Dwaipayan Shikari last updated on 09/Mar/21 $$\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{4}} }+… \\ $$$$ \\ $$Find in a closed…

f-0-R-g-0-R-f-ux-f-uf-x-g-ux-g-u-f-x-f-x-g-x-

Question Number 3886 by 123456 last updated on 23/Dec/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${f}\left({ux}\right)={f}\left({uf}\left({x}\right)\right) \\ $$$${g}\left({ux}\right)={g}\left({u}+{f}\left({x}\right)\right) \\ $$$${f}\left({x}\right)+{g}\left({x}\right)=? \\ $$ Commented by Yozzii last updated…

Question-134915

Question Number 134915 by BHOOPENDRA last updated on 08/Mar/21 Answered by Olaf last updated on 08/Mar/21 $$\mathrm{Fourier}\:: \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({t}\right){dt} \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}}…

f-x-y-f-x-1-y-y-x-gt-0-f-x-y-y-1-x-x-0-y-gt-0-xy-x-0-y-0-f-5-7-f-6-9-

Question Number 3793 by 123456 last updated on 21/Dec/15 $${f}\left({x},{y}\right)=\begin{cases}{{f}\left({x}−\mathrm{1},{y}\right)+{y}}&{{x}>\mathrm{0}}\\{{f}\left({x}+{y},{y}−\mathrm{1}\right)+{x}}&{{x}\leqslant\mathrm{0}\wedge{y}>\mathrm{0}}\\{{xy}}&{{x}\leqslant\mathrm{0}\wedge{y}\leqslant\mathrm{0}}\end{cases} \\ $$$${f}\left(\mathrm{5},\mathrm{7}\right)=? \\ $$$${f}\left(\mathrm{6},\mathrm{9}\right)=?? \\ $$ Commented by prakash jain last updated on 21/Dec/15 $${y}>\mathrm{0}…