Question Number 4025 by 123456 last updated on 26/Dec/15 $${f}_{{n}+\mathrm{1}} \left({x}\right)={x}^{{f}_{{n}} \left({x}\right)} \\ $$$${g}_{{n}+\mathrm{1}} \left({x}\right)=\left[{g}_{{n}} \left({x}\right)\right]^{{x}} \\ $$$${h}_{{n}+\mathrm{1}} \left({x}\right)=\left[{h}_{{n}} \left({x}\right)\right]^{{h}_{{n}} \left({x}\right)} \\ $$$${f}_{\mathrm{0}} \left({x}\right)={g}_{\mathrm{0}} \left({x}\right)={h}_{\mathrm{0}}…
Question Number 69459 by Tanmay chaudhury last updated on 23/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134984 by Dwaipayan Shikari last updated on 09/Mar/21 $$\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{4}} }+… \\ $$$$ \\ $$Find in a closed…
Question Number 3886 by 123456 last updated on 23/Dec/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${f}\left({ux}\right)={f}\left({uf}\left({x}\right)\right) \\ $$$${g}\left({ux}\right)={g}\left({u}+{f}\left({x}\right)\right) \\ $$$${f}\left({x}\right)+{g}\left({x}\right)=? \\ $$ Commented by Yozzii last updated…
Question Number 134957 by I want to learn more last updated on 09/Mar/21 Commented by I want to learn more last updated on 09/Mar/21 $$\mathrm{Check}\:\mathrm{this}\:\mathrm{sir}.…
Question Number 3878 by 123456 last updated on 23/Dec/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${f}\left({ux}\right)={x}^{{u}} {f}\left({x}\right) \\ $$$${f}\left({x}\right)=? \\ $$ Commented by Rasheed Soomro last updated on 23/Dec/15…
Question Number 134940 by Oyins last updated on 08/Mar/21 $${let}\:{X}=\mathbb{R}\:{wth}\:{the}\:{usual}\:{metric}.\:{prove}\:{that}\:{the}\:{open} \\ $$$${and}\:{bounded}\:{interval}\:{A}=\left(\mathrm{1},\mathrm{2}\right)\:{is}\:{an}\:{open}\:{set}\:{in}\:\mathbb{R}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134941 by I want to learn more last updated on 08/Mar/21 Commented by I want to learn more last updated on 09/Mar/21 Terms…
Question Number 134915 by BHOOPENDRA last updated on 08/Mar/21 Answered by Olaf last updated on 08/Mar/21 $$\mathrm{Fourier}\:: \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({t}\right){dt} \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}}…
Question Number 3793 by 123456 last updated on 21/Dec/15 $${f}\left({x},{y}\right)=\begin{cases}{{f}\left({x}−\mathrm{1},{y}\right)+{y}}&{{x}>\mathrm{0}}\\{{f}\left({x}+{y},{y}−\mathrm{1}\right)+{x}}&{{x}\leqslant\mathrm{0}\wedge{y}>\mathrm{0}}\\{{xy}}&{{x}\leqslant\mathrm{0}\wedge{y}\leqslant\mathrm{0}}\end{cases} \\ $$$${f}\left(\mathrm{5},\mathrm{7}\right)=? \\ $$$${f}\left(\mathrm{6},\mathrm{9}\right)=?? \\ $$ Commented by prakash jain last updated on 21/Dec/15 $${y}>\mathrm{0}…