Question Number 135165 by Dwaipayan Shikari last updated on 10/Mar/21 $${Solve}\:{Brachistochrone}\:{Curve}\:{Problem} \\ $$ Commented by Dwaipayan Shikari last updated on 10/Mar/21 $${I}\:{have}\:{a}\:{combined}\:{solution}.\:{But}\:{i}\:{want}\:{to}\:{know}\:{others} \\ $$$$\left.{Solutions}\::\right) \\…
Question Number 135169 by bramlexs22 last updated on 11/Mar/21 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\: \\ $$$$\mathrm{x}^{\mathrm{81}} +\mathrm{x}^{\mathrm{49}} +\mathrm{x}^{\mathrm{25}} +\:\mathrm{x}^{\mathrm{9}} +\:\mathrm{x}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{x}^{\mathrm{3}} +\mathrm{x}\: \\ $$ Terms of Service Privacy…
Question Number 69576 by Mr. K last updated on 25/Sep/19 $$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 4025 by 123456 last updated on 26/Dec/15 $${f}_{{n}+\mathrm{1}} \left({x}\right)={x}^{{f}_{{n}} \left({x}\right)} \\ $$$${g}_{{n}+\mathrm{1}} \left({x}\right)=\left[{g}_{{n}} \left({x}\right)\right]^{{x}} \\ $$$${h}_{{n}+\mathrm{1}} \left({x}\right)=\left[{h}_{{n}} \left({x}\right)\right]^{{h}_{{n}} \left({x}\right)} \\ $$$${f}_{\mathrm{0}} \left({x}\right)={g}_{\mathrm{0}} \left({x}\right)={h}_{\mathrm{0}}…
Question Number 69459 by Tanmay chaudhury last updated on 23/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134984 by Dwaipayan Shikari last updated on 09/Mar/21 $$\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}} }+\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{4}} }+… \\ $$$$ \\ $$Find in a closed…
Question Number 3886 by 123456 last updated on 23/Dec/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${g}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${f}\left({ux}\right)={f}\left({uf}\left({x}\right)\right) \\ $$$${g}\left({ux}\right)={g}\left({u}+{f}\left({x}\right)\right) \\ $$$${f}\left({x}\right)+{g}\left({x}\right)=? \\ $$ Commented by Yozzii last updated…
Question Number 134957 by I want to learn more last updated on 09/Mar/21 Commented by I want to learn more last updated on 09/Mar/21 $$\mathrm{Check}\:\mathrm{this}\:\mathrm{sir}.…
Question Number 3878 by 123456 last updated on 23/Dec/15 $${f}:\left[\mathrm{0},+\infty\right)\rightarrow\mathbb{R} \\ $$$${f}\left({ux}\right)={x}^{{u}} {f}\left({x}\right) \\ $$$${f}\left({x}\right)=? \\ $$ Commented by Rasheed Soomro last updated on 23/Dec/15…
Question Number 134940 by Oyins last updated on 08/Mar/21 $${let}\:{X}=\mathbb{R}\:{wth}\:{the}\:{usual}\:{metric}.\:{prove}\:{that}\:{the}\:{open} \\ $$$${and}\:{bounded}\:{interval}\:{A}=\left(\mathrm{1},\mathrm{2}\right)\:{is}\:{an}\:{open}\:{set}\:{in}\:\mathbb{R}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com