Menu Close

Category: Others

Question-66986

Question Number 66986 by Mr Jor last updated on 21/Aug/19 Commented by Mr Jor last updated on 21/Aug/19 $${The}\:{metal}\:{solid}\:{above}\:{is}\:{made}\:{up} \\ $$$${by}\:{joining}\:{a}\:{hemisphere}\:{of}\:{radius} \\ $$$$\mathrm{7}{cm}\:{to}\:{a}\:{cylinder}\:{of}\:{the}\:{same}\:{radius}. \\ $$$${The}\:{mass}\:{and}\:{density}\:{of}\:{the}\:{solid}…

The-external-length-width-and-height-of-an-open-rectangular-container-are-41cm-21cm-and-15-5cm-respectively-The-thickness-of-the-material-making-the-container-is-5mm-If-the-container-has-8litres-of-w

Question Number 66985 by Mr Jor last updated on 21/Aug/19 $$\mathrm{The}\:\mathrm{external}\:\mathrm{length},\mathrm{width}\:\mathrm{and}\:\mathrm{height} \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{open}\:\mathrm{rectangular}\:\mathrm{container}\:\mathrm{are} \\ $$$$\mathrm{41cm},\mathrm{21cm}\:\mathrm{and}\:\mathrm{15}.\mathrm{5cm}\:\mathrm{respectively}. \\ $$$$\mathrm{The}\:\mathrm{thickness}\:\mathrm{of}\:\mathrm{the}\:\mathrm{material}\:\mathrm{making} \\ $$$$\mathrm{the}\:\mathrm{container}\:\mathrm{is}\:\mathrm{5mm}.\mathrm{If}\:\mathrm{the}\:\mathrm{container} \\ $$$$\mathrm{has}\:\mathrm{8litres}\:\mathrm{of}\:\mathrm{water},\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{internal}\:\mathrm{height}\:\mathrm{above}\:\mathrm{the}\:\mathrm{water}\:\mathrm{level}. \\ $$$$\:\:\:\:\:\:\:\:…

sin-sin-x-cos-cos-x-x-0-2pi-

Question Number 1417 by 123456 last updated on 30/Jul/15 $$\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\leqslant\mathrm{cos}\:\left(\mathrm{cos}\:{x}\right) \\ $$$${x}\in\left[\mathrm{0},\mathrm{2}\pi\right) \\ $$ Commented by Rasheed Ahmad last updated on 02/Aug/15 $${What}\:{to}\:{do}\:{with}\:{it}?\:{Is}\:{it}\:{an}\:{inequation} \\ $$$${to}\:{solve}?\:{Or}\:{is}\:{it}\:{an}\:{identity}\:{to}…

Arrange-8-coins-in-one-line-on-a-table-such-that-the-head-or-tail-will-be-facing-upward-Try-to-flip-two-neighboring-coins-that-are-not-with-identical-face-upside-down-After-several-operations-how-

Question Number 1397 by 314159 last updated on 28/Jul/15 $${Arrange}\:\mathrm{8}\:{coins}\:{in}\:{one}\:{line}\:{on}\:{a}\:{table} \\ $$$${such}\:{that}\:{the}\:{head}\:{or}\:{tail}\:{will}\:{be}\:{facing} \\ $$$${upward}.{Try}\:{to}\:{flip}\:{two}\:{neighboring}\:{coins}\: \\ $$$${that}\:{are}\:{not}\:{with}\:{identical}\:{face}\:{upside}\:{down}.{After}\: \\ $$$${several}\:{operations}\:,\:{how}\:{many}\:{different}\: \\ $$$${ways}\:{can}\:{the}\:{heads}\:{and}\:{tails}\:{be}\:{arranged} \\ $$$${in}\:{one}\:{line}\:{on}\:{the}\:{table}. \\ $$ Commented…

Find-all-positive-integers-n-such-that-n-2014-and-3-n-1-n-will-be-a-perfect-square-integer-

Question Number 1379 by 314159 last updated on 27/Jul/15 $${Find}\:{all}\:{positive}\:{integers}\:{n}\:{such}\:{that}\:\: \\ $$$${n}\leqslant\mathrm{2014}\:{and}\:\mathrm{3}^{{n}−\mathrm{1}} .{n}\:\:{will}\:{be}\:{a}\:{perfect}\:{square}\:{integer}. \\ $$ Commented by 123456 last updated on 26/Jul/15 $${m}\equiv\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$${n}={m}^{\mathrm{2}}…

lets-f-R-R-and-g-R-R-two-continuous-and-differentiable-functions-suppose-that-g-0-0-then-compute-h-x-lim-x-0-g-f-x-x-f-x-x-

Question Number 1375 by 123456 last updated on 26/Jul/15 $$\mathrm{lets}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{and}\:{g}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{two}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{differentiable}\:\mathrm{functions} \\ $$$$\mathrm{suppose}\:\mathrm{that}\:{g}\left(\mathrm{0}\right)=\mathrm{0},\:\mathrm{then}\:\mathrm{compute} \\ $$$${h}\left({x}\right)=\underset{\Delta{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{g}\left({f}\left({x}+\Delta{x}\right)−{f}\left({x}\right)\right)}{\Delta{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

lets-f-R-R-continuous-and-differentiable-compute-g-x-lim-x-0-e-f-x-x-e-f-x-f-x-x-f-x-

Question Number 1369 by 123456 last updated on 25/Jul/15 $$\mathrm{lets}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{differentiable} \\ $$$$\mathrm{compute} \\ $$$${g}\left({x}\right)=\underset{\Delta{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{f}\left({x}+\Delta{x}\right)} −{e}^{{f}\left({x}\right)} }{{f}\left({x}+\Delta{x}\right)−{f}\left({x}\right)} \\ $$ Answered by prakash jain last updated…

f-C-C-z-0-C-such-that-f-z-f-z-0-z-z-0-f-z-z-0-does-lim-z-z-0-f-z-f-z-0-

Question Number 1339 by 123456 last updated on 24/Jul/15 $${f}:\mathbb{C}\rightarrow\mathbb{C},{z}_{\mathrm{0}} \in\mathbb{C}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left({z}\right)−{f}\left({z}_{\mathrm{0}} \right)=\left({z}−{z}_{\mathrm{0}} \right){f}\left({z}−{z}_{\mathrm{0}} \right) \\ $$$$\mathrm{does}\:\underset{{z}\rightarrow{z}_{\mathrm{0}} } {\mathrm{lim}}{f}\left({z}\right)={f}\left({z}_{\mathrm{0}} \right)? \\ $$ Commented by…