Menu Close

Category: Others

tan-x-tan-y-z-a-tan-y-tan-z-x-b-tan-z-tan-x-y-c-for-wich-values-of-a-b-c-the-system-have-solutions-x-y-z-a-b-c-R-6-

Question Number 976 by 123456 last updated on 11/May/15 $$\begin{cases}{\mathrm{tan}\:{x}\:\mathrm{tan}\:\left({y}−{z}\right)={a}}\\{\mathrm{tan}\:{y}\:\mathrm{tan}\:\left({z}−{x}\right)={b}}\\{\mathrm{tan}\:{z}\:\mathrm{tan}\:\left({x}−{y}\right)={c}}\end{cases} \\ $$$$\mathrm{for}\:\mathrm{wich}\:\mathrm{values}\:\mathrm{of}\:{a},{b},{c}\:\mathrm{the}\:\mathrm{system} \\ $$$$\mathrm{have}\:\mathrm{solutions}? \\ $$$$\left({x},{y},{z},{a},{b},{c}\right)\in\mathbb{R}^{\mathrm{6}} \\ $$ Commented by 123456 last updated on 11/May/15…

compute-v-dr-where-v-yzi-xzj-xyk-and-is-intersection-of-x-2-y-2-1-with-z-xy-orinted-in-the-way-that-the-prpjection-on-xy-travel-by-

Question Number 956 by 123456 last updated on 07/May/15 $$\mathrm{compute}\:\underset{\gamma} {\int}\boldsymbol{{v}}\centerdot{d}\boldsymbol{{r}}\:\mathrm{where} \\ $$$$\boldsymbol{{v}}={yz}\boldsymbol{{i}}+{xz}\boldsymbol{{j}}+{xy}\boldsymbol{{k}} \\ $$$$\mathrm{and}\:\gamma\:\mathrm{is}\:\mathrm{intersection}\:\mathrm{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\:\mathrm{with} \\ $$$${z}={xy}\:\mathrm{orinted}\:\mathrm{in}\:\mathrm{the}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{prpjection}\:\mathrm{on}\:{xy}\:\mathrm{travel}\:\mathrm{by}\:\circlearrowleft \\ $$ Terms of…

Question-66497

Question Number 66497 by ketto2 last updated on 16/Aug/19 Answered by MJS last updated on 16/Aug/19 $$\mathrm{all}\:\mathrm{the}\:\mathrm{money}\:=\mathrm{1} \\ $$$$\mathrm{1}−\frac{\mathrm{5}}{\mathrm{11}}−\frac{\mathrm{7}}{\mathrm{12}}×\left(\mathrm{1}−\frac{\mathrm{5}}{\mathrm{11}}\right)=\frac{\mathrm{6}}{\mathrm{11}}−\frac{\mathrm{7}}{\mathrm{12}}×\frac{\mathrm{6}}{\mathrm{11}}=\frac{\mathrm{6}}{\mathrm{11}}−\frac{\mathrm{7}}{\mathrm{22}}=\frac{\mathrm{5}}{\mathrm{22}} \\ $$ Terms of Service Privacy…

find-the-fourier-serie-of-f-t-sinh-t-into-the-interval-1-1-

Question Number 922 by 123456 last updated on 25/Apr/15 $$\mathrm{find}\:\mathrm{the}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{of} \\ $$$${f}\left({t}\right)=\mathrm{sinh}\left({t}\right) \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{1},+\mathrm{1}\right) \\ $$ Answered by prakash jain last updated on 25/Apr/15 $${F}\left({w}\right)=\underset{{k}=−\infty}…