Menu Close

Category: Others

n-1-coth-npi-n-3-

Question Number 131686 by Dwaipayan Shikari last updated on 07/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left({n}\pi\right)}{{n}^{\mathrm{3}} } \\ $$ Commented by Dwaipayan Shikari last updated on 07/Feb/21 $${I}\:{have}\:{found}\:\frac{\mathrm{7}\pi^{\mathrm{3}}…

1-Show-that-0-pi-2-f-sin-2x-sin-x-dx-2-0-pi-4-f-cos-2x-cos-x-dx-2-If-f-z-d-dz-5-f-z-then-what-is-the-value-of-f-e-

Question Number 66140 by AnjanDey last updated on 09/Aug/19 $$\mathrm{1}.\boldsymbol{{Show}}\:\boldsymbol{{that}}:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{sin}\:\mathrm{2}{x}\right)\mathrm{sin}\:{x}\:{dx}=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {f}\left(\mathrm{cos}\:\mathrm{2}{x}\right)\mathrm{cos}\:{x}\:{dx}. \\ $$$$\mathrm{2}.\boldsymbol{{If}}\:\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)=\frac{\boldsymbol{{d}}}{\boldsymbol{{dz}}}\left\{\mathrm{5}^{\mid\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)\mid} \right\}\:\:\boldsymbol{{then}}\:\boldsymbol{{what}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{f}}'\left(\boldsymbol{{e}}\right)? \\ $$ Terms of Service Privacy Policy Contact:…

Given-that-f-x-x-for-0-x-lt-2-0-for-2-x-3-is-periodic-with-period-3-units-find-the-value-of-f-5-and-f-5-sketch-the-graph-of-f-x-for-x-between-3-and-6-please-i-really-need-

Question Number 66116 by Rio Michael last updated on 09/Aug/19 $${Given}\:{that}\:\:{f}\left({x}\right)\:=\:\begin{cases}{{x},\:\:{for}\:\mathrm{0}\leqslant{x}<\mathrm{2}}\\{\mathrm{0},\:{for}\:\mathrm{2}\leqslant{x}\leqslant\mathrm{3}}\end{cases} \\ $$$${is}\:{periodic}\:{with}\:{period}\:\mathrm{3}\:{units}, \\ $$$${find}\:{the}\:{value}\:{of}\:\:{f}\left(\mathrm{5}\right)\:{and}\:{f}\left(−\mathrm{5}\right) \\ $$$${sketch}\:{the}\:{graph}\:{of}\:{f}\left({x}\right)\:{for}\:{x}\:{between}\:−\mathrm{3}\:{and}\:\mathrm{6} \\ $$$$ \\ $$$${please}\:{i}\:{really}\:{need}\:{explanations}\:{when}\:{solving}\:{the}\:{first}\:{part}\:{of}\:{the}\:{question} \\ $$$${thanks} \\ $$…

Given-that-the-binomial-expansion-of-2-kx-2-5x-2-x-lt-2-5-in-ascending-powers-of-x-is-1-2-7-4-x-Ax-2-find-the-values-of-A-and-k-

Question Number 66108 by Rio Michael last updated on 09/Aug/19 $${Given}\:{that}\:{the}\:{binomial}\:{expansion}\:{of}\:\frac{\mathrm{2}\:+\:{kx}}{\left(\mathrm{2}−\mathrm{5}{x}\right)^{\mathrm{2}\:} }\:,\:\mid{x}\mid\:<\:\frac{\mathrm{2}}{\mathrm{5}\:}\:,{in}\:{ascending} \\ $$$${powers}\:{of}\:{x}\:{is}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{7}}{\mathrm{4}}{x}\:+\:{Ax}^{\mathrm{2}} \:+\:…,\:{find}\:{the}\:{values}\:{of}\:{A}\:{and}\:{k} \\ $$ Commented by mr W last updated on 09/Aug/19…

Given-that-S-n-a-1-r-n-1-r-r-1-show-that-S-3n-S-2n-S-n-r-2n-hence-given-that-r-1-2-find-n-0-S-3n-S-2n-S-n-

Question Number 66107 by Rio Michael last updated on 09/Aug/19 $${Given}\:{that}\:{S}_{{n}} \:=\:\frac{{a}\left(\mathrm{1}\:−{r}^{{n}} \right)}{\mathrm{1}−{r}}\:,\:{r}\:\neq\:\mathrm{1},\:{show}\:{that}\:\frac{{S}_{\mathrm{3}{n}} \:−{S}_{\mathrm{2}{n}} }{{S}_{{n}} \:}\:=\:{r}^{\mathrm{2}{n}} \\ $$$${hence}\:{given}\:{that}\:{r}\:=\frac{\mathrm{1}}{\mathrm{2}}\:{find}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{S}_{\mathrm{3}{n}} \:−{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\right) \\ $$…

f-x-2x-3-x-4-show-that-the-equation-f-x-0-has-root-between-1-and-2-show-that-the-equation-f-x-0-can-be-written-as-x-2-x-1-2-use-the-iteration-x-n-1-2-x-n-1-2-

Question Number 66104 by Rio Michael last updated on 09/Aug/19 $${f}\left({x}\right)=\:\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4} \\ $$$${show}\:{that}\:{the}\:{equation}\:{f}\left({x}\right)\:=\mathrm{0}\:{has}\:{root}\:{between}\:\mathrm{1}\:{and}\:\mathrm{2} \\ $$$${show}\:{that}\:{the}\:{equation}\:{f}\left({x}\right)\:=\mathrm{0}\:{can}\:{be}\:{written}\:{as}\: \\ $$$$\:\:{x}\:=\:\sqrt{\left(\frac{\mathrm{2}}{{x}}\:+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${use}\:{the}\:{iteration} \\ $$$$\:{x}_{{n}+\mathrm{1}\:} \:=\:\sqrt{\left(\frac{\mathrm{2}}{{x}_{{n}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\right)\:,} \\…