Menu Close

Category: Others

A-binary-relation-R-is-defined-on-N-the-set-of-natural-numbers-by-x-R-y-n-Z-x-2-n-y-x-y-N-show-that-R-is-an-equivalence-relation-

Question Number 66103 by Rio Michael last updated on 09/Aug/19 $${A}\:{binary}\:{relation}\:{R}\:{is}\:{defined}\:{on}\:\mathbb{N},{the}\:{set}\:{of}\:{natural}\:{numbers}\:{by}\: \\ $$$$\:_{{x}} {R}_{{y}} \:\Leftrightarrow\:\exists\:{n}\:\in\:\mathbb{Z}\::\:{x}\:=\:\mathrm{2}^{{n}} {y},\:\:{x},{y}\:\in\:\mathbb{N} \\ $$$${show}\:{that}\:{R}\:{is}\:{an}\:{equivalence}\:{relation} \\ $$ Commented by Prithwish sen last…

find-dy-dx-when-y-x-2-ln-3x-Given-that-xsinx-y-2-0-show-that-y-2-2cosx-2-dy-dx-2-2y-d-2-y-dx-2-

Question Number 66101 by Rio Michael last updated on 09/Aug/19 $${find}\:\frac{{dy}}{{dx}}\:\:{when}\:{y}\:=\:{x}^{\mathrm{2}} {ln}\left(\mathrm{3}{x}\right) \\ $$$${Given}\:{that}\:{xsinx}\:−\:{y}^{\mathrm{2}} =\mathrm{0}\:{show}\:{that}\:\:{y}^{\mathrm{2}} \:=\:\mathrm{2}{cosx}\:−\mathrm{2}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \:−\mathrm{2}{y}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} } \\ $$ Commented by Prithwish sen…

if-f-is-continuos-and-diferentiable-everywhere-on-R-if-f-0-0-and-f-x-f-x-then-proof-that-f-x-0-

Question Number 532 by 123456 last updated on 25/Jan/15 $${if}\:{f}\:{is}\:{continuos}\:{and}\:{diferentiable} \\ $$$${everywhere}\:{on}\:\mathbb{R},\:{if}\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$$\mid{f}'\left({x}\right)\mid\leqslant\mid{f}\left({x}\right)\mid\:{then}\:{proof}\:{that} \\ $$$${f}\left({x}\right)=\mathrm{0} \\ $$ Answered by prakash jain last updated on…

Prove-or-disprove-n-0-1-n-2-97-2-2-97-e-97-e-97-2-388-e-2-97-1-e-2-97-1-37635-37636-1-388-97-

Question Number 131580 by Dwaipayan Shikari last updated on 06/Feb/21 $$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{disprove}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{97}\right)^{\mathrm{2}} }=\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{97}\left(\boldsymbol{{e}}^{\boldsymbol{\pi}\sqrt{\mathrm{97}}} −{e}^{−\boldsymbol{\pi}\sqrt{\mathrm{97}}} \right)^{\mathrm{2}} }+\frac{\boldsymbol{\pi}}{\mathrm{388}}.\frac{{e}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} +\mathrm{1}}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} −\mathrm{1}}+\frac{\mathrm{37635}}{\mathrm{37636}}−\frac{\mathrm{1}}{\:\mathrm{388}\sqrt{\mathrm{97}}} \\ $$…