Question Number 192746 by Mastermind last updated on 26/May/23 $$\mathrm{Let}\:\mathrm{G}\:\mathrm{be}\:\mathrm{the}\:\mathrm{group}\:\left(\left\{\mathrm{1},\:\imath,\:−\mathrm{1},\:−\imath\right\},\:\centerdot\right) \\ $$$$\mathrm{and}\:\mathrm{let}\:\mathrm{H}\:\leqslant\:\left(\underset{−} {+}\mathrm{1},\:\centerdot\right),\:\mathrm{show}\:\mathrm{that} \\ $$$$\theta:\mathrm{G}\rightarrow\mathrm{H}\:\mathrm{is}\:\mathrm{an}\:\mathrm{Isomorphism}. \\ $$$$ \\ $$$$\mathrm{Hello}! \\ $$ Answered by aleks041103 last…
Question Number 192737 by Mastermind last updated on 25/May/23 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{is}\:\mathrm{null} \\ $$$$\mathrm{when}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\frac{\mathrm{n}^{\mathrm{3}} +\mathrm{2n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{n}^{\mathrm{4}} −\mathrm{n}^{\mathrm{2}} +\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$ Answered…
Question Number 192738 by Mastermind last updated on 25/May/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{supremum}\:\mathrm{and}\:\mathrm{infimum} \\ $$$$\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sequence} \\ $$$$ \\ $$$$\left.\mathrm{a}\left.\right)\left.\:\left\{\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2n}}\right\}\:\:\:\:\mathrm{b}\right)\:\left\{\frac{\left(−\right)^{\mathrm{n}} \mathrm{n}}{\mathrm{2n}+\mathrm{1}}\right\}\:\:\:\:\mathrm{c}\right)\left\{\frac{\mathrm{1}+\left(−\right)^{\mathrm{n}} }{\mathrm{3}}\right\} \\ $$$$ \\ $$$$\left.\mathrm{d}\left.\right)\:\left\{\mathrm{sin}\frac{\mathrm{n}\pi}{\mathrm{2}}\right\}\:\:\:\:\mathrm{e}\right)\:\left\{\frac{\mathrm{1}}{\mathrm{n}}\:−\:\mathrm{sin}\frac{\mathrm{n}\pi}{\mathrm{2}}\right\} \\ $$$$ \\…
Question Number 127186 by Dwaipayan Shikari last updated on 27/Dec/20 $$\int_{\mathrm{0}} ^{{a}} {e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}}−\frac{{e}^{−{a}^{\mathrm{2}} } }{\mathrm{2}{a}+\frac{\mathrm{1}}{{a}+\frac{\mathrm{2}}{\mathrm{2}{a}+\frac{\mathrm{3}}{{a}+\frac{\mathrm{4}}{\mathrm{2}{a}+…}}}}}\:\left({Prove}\right) \\ $$ Commented by Dwaipayan Shikari last updated…
Question Number 127187 by Dwaipayan Shikari last updated on 27/Dec/20 $$\mathrm{1}−\mathrm{5}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{9}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{3}} −\mathrm{13}\left(\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}.\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{3}} +..=\frac{\mathrm{2}}{\pi}\:\left({prove}\right) \\ $$ Commented by Dwaipayan Shikari last updated on 27/Dec/20 Terms…
Question Number 61646 by maxmathsup by imad last updated on 05/Jun/19 $${let}\:{f}\left({x}\right)\:={e}^{−{ax}} \:{arctan}\left(\mathrm{3}{x}\right)\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:\left({x}\right)\:{at}\:{integr}\:{serie}\:. \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{f}\left({x}\right){dx}\:. \\ $$…
Question Number 61625 by Sharath Kumar last updated on 05/Jun/19 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+…}}}}}= \\ $$ Answered by MJS last updated on 05/Jun/19 $${x}=\mathrm{1}+\frac{\mathrm{1}}{{x}}\:\wedge\:{x}>\mathrm{1}\:\Rightarrow\:{x}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$ Commented by…
Question Number 192687 by Mastermind last updated on 24/May/23 $$\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{xcos}\left(\mathrm{nx}\right)\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$ Answered by Subhi last updated on 24/May/23…
Question Number 192648 by pascal889 last updated on 24/May/23 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\right) \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1} \\ $$ Answered by Skabetix last updated on…
Question Number 192636 by pascal889 last updated on 23/May/23 $${lim}_{{x}\rightarrow\mathrm{1}\:} \left(\mathrm{3}{x}^{\mathrm{2}} \:−\mathrm{7}{x}+\mathrm{3}\right)^{\mathrm{10}} \: \\ $$$${find}\:{the}\:{limit} \\ $$ Answered by Subhi last updated on 24/May/23 $$\mathrm{1}…