Question Number 192443 by Mastermind last updated on 18/May/23 $$\mathrm{Find}\:\mathrm{the}\:\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{16th}\:\mathrm{term} \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{3}\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{4}\frac{\mathrm{3}}{\mathrm{4}}\:+\:\mathrm{6}\:+\:\mathrm{7}\frac{\mathrm{1}}{\mathrm{4}}\:… \\ $$ Answered by AST last updated on 18/May/23 $${S}_{\mathrm{16}} =\mathrm{8}\left(\mathrm{7}+\frac{\mathrm{75}}{\mathrm{4}}\right)=\mathrm{56}+\mathrm{150}=\mathrm{206} \\ $$…
Question Number 126907 by Dwaipayan Shikari last updated on 25/Dec/20 $$\boldsymbol{{Merry}}\:\boldsymbol{{christmas}}\:!! \\ $$$$ \\ $$π π€ΆβοΈπππ¦ $$ \\ $$$$ \\ $$πππππππππ ππππππππ $$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\boldsymbol{{tanh}}^{β\mathrm{1}} \boldsymbol{{x}}}{\:\sqrt[{\mathrm{5}}]{\boldsymbol{{x}}}}\boldsymbol{{dx}}…
Question Number 61327 by olalekan2 last updated on 01/Jun/19 Answered by mr W last updated on 01/Jun/19 $$\mathrm{1}. \\ $$$$\mathrm{5}^{\mathrm{5}} =\mathrm{3125} \\ $$$$ \\ $$$$\mathrm{2}.…
Question Number 192397 by Mastermind last updated on 16/May/23 $$\mathrm{Let}\:\mathrm{f}:\mathrm{D}\left(\mathrm{f}\right)\subseteq\mathbb{R}^{\mathrm{n}} \rightarrow\mathbb{R}^{\mathrm{m}} \\ $$$$\mathrm{let}\:'\mathrm{a}'\:\mathrm{be}\:\mathrm{an}\:\mathrm{interior}\:\mathrm{point}\:\mathrm{of}\:\mathrm{Dom}\left(\mathrm{f}\right) \\ $$$$\mathrm{and}\:\mathrm{let}\:'\mathrm{u}'\:\mathrm{be}\:\mathrm{any}\:\mathrm{vector}\:\mathrm{in}\:\mathbb{R}^{\mathrm{n}} ,\:\mathrm{when} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{v}\in\mathbb{R}^{\mathrm{m}} \:\mathrm{called}\:\mathrm{the}\:\mathrm{directional} \\ $$$$\mathrm{derivative}\:\mathrm{of}\:\mathrm{f}\:\mathrm{at}\:'\mathrm{a}'\:\mathrm{along}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{determine}\:\mathrm{by}\:\mathrm{u}\:? \\ $$$$…
Question Number 192396 by moh777 last updated on 16/May/23 Answered by mehdee42 last updated on 16/May/23 $$\mathrm{4}{x}β{x}^{\mathrm{2}} =\mathrm{3}\Rightarrow{x}=\mathrm{1},\mathrm{3} \\ $$$${v}_{\mathrm{1}} =\pi\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{4}{x}β{x}^{\mathrm{2}} \right)^{\mathrm{2}} {dx}=\pi\int_{\mathrm{0}}…
Question Number 192398 by Mastermind last updated on 16/May/23 $$\mathrm{Let}\:\mathrm{f}:\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{define}\:\mathrm{by}\: \\ $$$$\mathrm{f}\left(\mathrm{x},\:\mathrm{y},\:\mathrm{z}\right)\:=\:\mathrm{2x}^{\mathrm{2}} β\mathrm{y}+\mathrm{6xy}β\mathrm{z}^{\mathrm{3}} +\mathrm{3z}. \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{directional}\:\mathrm{deriva}β \\ $$$$\mathrm{tive}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\mathrm{u}=\left(\mathrm{2},\:\mathrm{1},\:β\mathrm{3}\right) \\ $$$$ \\ $$$$\mathrm{help}! \\ $$…
Question Number 61318 by Tawa1 last updated on 31/May/19 Answered by tanmay last updated on 01/Jun/19 $$\overset{\rightarrow} {{V}}_{{train}\:{w}.{r}.{t}\:{ground}} =\left(\frac{\mathrm{64000}}{\mathrm{3600}}\right){m}/{s}\:\overset{\rightarrow} {{i}}=\left(\frac{\mathrm{160}}{\mathrm{9}}\right){m}/{s}\:\overset{\rightarrow} {{i}} \\ $$$$\overset{\rightarrow} {{V}}_{{rain}\:{w}.{r}.{t}\:{ground}} =\mathrm{5}{m}/{s}\:\left(β\overset{\rightarrow}…
Question Number 192341 by Mastermind last updated on 15/May/23 $$\left.\mathrm{1}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{or}\:\mathrm{even}\:\left(\mathrm{or}\:\mathrm{pality}\right) \\ $$$$\mathrm{of}\:\mathrm{permutation}\:\theta=\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}\:\mathrm{8}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{any}\:\mathrm{permutation} \\ $$$$\theta:\mathrm{S}\rightarrow\mathrm{S}\:\mathrm{where}\:\mathrm{S}\:\mathrm{is}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{set}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{written}\:\mathrm{as}\:\mathrm{a}\:\mathrm{product}\:\mathrm{of}\:\mathrm{disjoint} \\ $$$$\mathrm{cycle} \\ $$$$ \\…
Question Number 192340 by Mastermind last updated on 15/May/23 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{any}\:\mathrm{permuta}β \\ $$$$\mathrm{tion}\:\theta\:\mathrm{is}\:\mathrm{the}\:\mathrm{least}\:\mathrm{common}\:\mathrm{multiple} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{its}\:\mathrm{disjoint}\:\mathrm{cycles}. \\ $$$$ \\ $$$$\:\mathrm{hi} \\ $$ Answered by aleks041103 last updated…
Question Number 192342 by Mastermind last updated on 15/May/23 $$\left.\mathrm{1}\right)\:\mathrm{Compute}\:\mathrm{in}\:\mathrm{S}_{\mathrm{a}} \:,\:\mathrm{a}^{β\mathrm{1}} \mathrm{ba}\:\:\mathrm{where}\: \\ $$$$\mathrm{a}=\left(\mathrm{1}\:\mathrm{2}\right)\left(\mathrm{1}\:\mathrm{3}\:\mathrm{5}\right),\:\mathrm{b}=\left(\mathrm{1}\:\mathrm{5}\:\mathrm{7}\:\mathrm{1}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Given}\:\mathrm{permutation}\:\alpha\:=\:\left(\mathrm{1}\:\mathrm{2}\right)\left(\mathrm{3}\:\mathrm{4}\right), \\ $$$$\beta\:=\:\left(\mathrm{1}\:\mathrm{3}\right)\left(\mathrm{5}\:\mathrm{6}\right).\:\mathrm{Find}\:\mathrm{a}\:\mathrm{permutation} \\ $$$$\mathrm{x}\in\mathrm{S}_{\mathrm{6}} \:\exists\alpha\mathrm{x}\:=\:\beta. \\ $$$$…