Menu Close

Category: Others

prove-that-z-gt-Re-z-Im-z-2-z-C-

Question Number 192126 by universe last updated on 08/May/23 $$\:\:\:\:\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\:\:\:\:\:\:\mid\boldsymbol{{z}}\mid\:>\:\frac{\mid\boldsymbol{{Re}}\left(\boldsymbol{{z}}\right)\mid\:+\mid\boldsymbol{{Im}}\left(\boldsymbol{{z}}\right)\mid}{\mathrm{2}}\:\:,\:\:\:\forall\boldsymbol{{z}}\in\mathbb{C} \\ $$ Commented by York12 last updated on 09/May/23 $${sir}\:{how}\:{can}\:{I}\:{reach}\:{you}\:{out}\:,\:{I}\:{need}\:{to}\:{ask}\:{several}\:{questions} \\ $$ Answered…

Prove-that-the-order-of-a-subgroup-S-of-a-finite-group-G-always-divide-the-order-of-group-G-

Question Number 192094 by Mastermind last updated on 08/May/23 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{a}\:\mathrm{subgroup} \\ $$$$\mathrm{S}\:\mathrm{of}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{group}\:\mathrm{G},\:\mathrm{always}\:\mathrm{divide} \\ $$$$\mathrm{the}\:\mathrm{order}\:\mathrm{of}\:\mathrm{group}\:\mathrm{G}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Prove-a-non-empty-set-S-of-a-group-G-wrt-binary-operation-is-a-sub-group-of-G-Iff-1-a-b-S-a-b-S-2-a-S-a-1-S-Hello-

Question Number 192095 by Mastermind last updated on 07/May/23 $$\mathrm{Prove}\:\mathrm{a}\:\mathrm{non}−\mathrm{empty}\:\mathrm{set}\:\mathrm{S}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group} \\ $$$$\mathrm{G}\:\mathrm{wrt}\:\mathrm{binary}\:\mathrm{operation}\:\ast\:\mathrm{is}\:\mathrm{a}\:\mathrm{sub}− \\ $$$$\mathrm{group}\:\mathrm{of}\:\mathrm{G}.\:\mathrm{Iff}\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{a},\mathrm{b}\:\in\:\mathrm{S}\:\Rightarrow\:\mathrm{a}\ast\mathrm{b}\in\mathrm{S} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}\:\in\:\mathrm{S}\:\Rightarrow\:\mathrm{a}^{−\mathrm{1}} \:\in\:\mathrm{S}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Hello}…

Let-H-be-a-non-empty-subset-of-a-group-G-prove-that-the-follow-ing-are-equivalent-1-H-is-a-subgroup-of-G-2-for-a-b-H-ab-1-H-3-for-a-b-ab-H-4-for-a-H-a-1-H-Hint-prove-1-2

Question Number 192077 by Mastermind last updated on 07/May/23 $$\mathrm{Let}\:\mathrm{H}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}−\mathrm{empty}\:\mathrm{subset}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{group}\:\mathrm{G},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{follow}− \\ $$$$\mathrm{ing}\:\mathrm{are}\:\mathrm{equivalent} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{H}\:\mathrm{is}\:\mathrm{a}\:\mathrm{subgroup}\:\mathrm{of}\:\mathrm{G} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{for}\:\mathrm{a},\mathrm{b}\:\in\:\mathrm{H},\:\mathrm{ab}^{−\mathrm{1}} \:\in\:\mathrm{H} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{for}\:\mathrm{a},\mathrm{b}\:\in\:\mathrm{ab}\:\in\:\mathrm{H} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{for}\:\mathrm{a}\:\in\:\mathrm{H},\:\mathrm{a}^{−\mathrm{1}} \:\in\:\mathrm{H} \\…

Question-61003

Question Number 61003 by Tawa1 last updated on 28/May/19 Answered by tanmay last updated on 28/May/19 $${PQ}={diameter}=\sqrt{\left(\mathrm{4}−\mathrm{0}\right)^{\mathrm{2}} +\left(\mathrm{0}−\mathrm{2}\right)^{\mathrm{2}} }\:=\mathrm{2}\sqrt{\mathrm{5}}\: \\ $$$${radius}=\sqrt{\mathrm{5}}\: \\ $$$${centre}=\left(\frac{\mathrm{0}+\mathrm{4}}{\mathrm{2}},\frac{\mathrm{2}+\mathrm{0}}{\mathrm{2}}\right)\rightarrow\left(\mathrm{2},\mathrm{1}\right) \\ $$$${eqn}\:{circle}\:\left({x}−\mathrm{2}\right)^{\mathrm{2}}…

a-a-b-b-b-c-c-c-a-4-ab-2-bc-2-abc-ca-2-a-2-b-b-2-c-c-2-a-a-a-b-3-b-b-c-3-c-c-a-3-

Question Number 60984 by naka3546 last updated on 28/May/19 $$\frac{{a}}{{a}−{b}}\:\:+\:\:\frac{{b}}{{b}−{c}}\:\:+\:\:\frac{{c}}{{c}−{a}}\:\:=\:\:\mathrm{4} \\ $$$${ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{abc}\:+\:{ca}^{\mathrm{2}} \:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\left(\frac{{a}}{{a}−{b}}\right)^{\mathrm{3}} \:\:+\:\:\left(\frac{{b}}{{b}−{c}}\right)^{\mathrm{3}} \:\:+\:\:\left(\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:\:=\:\:? \\ $$$$…

Question-60955

Question Number 60955 by Tawa1 last updated on 27/May/19 Commented by alphaprime last updated on 27/May/19 hello sir , I want you to join my community to resolve the question no. 60723 , so please provide me your email Commented by Tawa1 last updated on 27/May/19 $$\mathrm{How}\:?…

Show-that-C-1-1-where-1-with-addition-operation-is-a-group-Help-

Question Number 191997 by Mastermind last updated on 05/May/23 $$\mathrm{Show}\:\mathrm{that}\:\mathbb{C}=\left\{−\mathrm{1},\mathrm{1},−\imath,\imath\right\}\:\mathrm{where} \\ $$$$\imath=\sqrt{−\mathrm{1}}\:\mathrm{with}\:\mathrm{addition}\:\mathrm{operation}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{group}. \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$ Commented by Rasheed.Sindhi last updated…

Ques-1-Let-G-be-a-group-then-show-that-for-each-a-G-a-unique-element-e-G-a-e-e-a-a-Ques-2-If-a-G-x-G-and-x-is-unique-show-that-if-x-a-e-then-a-x-e-Hello-

Question Number 191986 by Mastermind last updated on 04/May/23 $$\mathrm{Ques}.\:\mathrm{1} \\ $$$$\mathrm{Let}\:\left(\mathrm{G},\ast\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{group},\:\mathrm{then}\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{for}\:\mathrm{each}\:\mathrm{a}\in\mathrm{G},\:\exists\:\mathrm{a}\:\mathrm{unique}\: \\ $$$$\mathrm{element}\:\mathrm{e}\in\mathrm{G}\:\mid\:\mathrm{a}\ast\mathrm{e}=\mathrm{e}\ast\mathrm{a}=\mathrm{a} \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{2} \\ $$$$\mathrm{If}\:\mathrm{a}\in\mathrm{G}\:\Rightarrow\:\mathrm{x}\in\mathrm{G}\:\mathrm{and}\:\mathrm{x}\:\mathrm{is}\:\mathrm{unique} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{x}\ast\mathrm{a}=\mathrm{e},\:\mathrm{then}\:\mathrm{a}\ast\mathrm{x}=\mathrm{e}. \\…