Menu Close

Category: Others

Question-60545

Question Number 60545 by Tawa1 last updated on 21/May/19 Answered by MJS last updated on 22/May/19 $$\mathrm{diameter}\:\mathrm{2}\:\mathrm{volume}\:\mathrm{2}^{\mathrm{3}} =\mathrm{8} \\ $$$$\mathrm{diameter}\:\mathrm{3}\:\mathrm{volume}\:\mathrm{3}^{\mathrm{3}} =\mathrm{27} \\ $$$$\mathrm{diameter}\:\mathrm{4}\:\mathrm{volume}\:\mathrm{4}^{\mathrm{3}} =\mathrm{64} \\…

i-found-some-interesting-basic-question-hence-sharing-1-if-A-1-4-A-2-find-interval-2-if-A-1-4-A-2-3-y-1-A-and-A-1-4-y-4-y-1-A-A-1-4-y-

Question Number 60514 by tanmay last updated on 21/May/19 $${i}\:{found}\:{some}\:{interesting}\:{basic}\:{question} \\ $$$${hence}\:{sharing}… \\ $$$$\left.\mathrm{1}\right){if}\:{A}\in\left[\mathrm{1},\mathrm{4}\right]\:\:{A}^{\mathrm{2}} \:\in\:\:?\:\leftarrow{find}\:{interval}\: \\ $$$$\left.\mathrm{2}\right){if}\:{A}\:\in\:\left[−\mathrm{1},\mathrm{4}\right]\:\:{A}^{\mathrm{2}} \:\in\:? \\ $$$$\left.\mathrm{3}\right)\:{y}=\frac{\mathrm{1}}{{A}\:\:}\:\:{and}\:{A}\in\:\:\:\:\left[\mathrm{1},\mathrm{4}\right]\:\:{y}\in\:? \\ $$$$\left.\mathrm{4}\right){y}=\frac{\mathrm{1}}{\mid{A}\mid}\:\:{A}\in\left[−\mathrm{1},\mathrm{4}\right]\:\:\:{y}\in\:? \\ $$ Commented…

x-ln-1-x-0-1614-find-x-1II-I-think-we-can-use-Lambert-BOSSES-help-your-boy-

Question Number 191499 by Mastermind last updated on 24/Apr/23 $$\mathrm{x}\:+\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:=\:\mathrm{0}.\mathrm{1614},\:\mathrm{find}\:\mathrm{x}?\mathrm{1II} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{Lambert} \\ $$$$ \\ $$$$\mathrm{BOSSES},\:\mathrm{help}\:\mathrm{your}\:\mathrm{boy}! \\ $$ Commented by mr W last updated on…

If-A-2c-a-c-b-B-c-a-0-and-C-1-c-a-1-b-are-three-points-then-prove-that-i-AB-2-BC-2-CA-2-c-2-1-c-1-2-ii-AB-2-BC-2-AC-2-

Question Number 191498 by MATHEMATICSAM last updated on 24/Apr/23 $$\mathrm{If}\:\mathrm{A}\left(\frac{\mathrm{2}{c}}{{a}}\:,\:\frac{{c}}{{b}}\right),\:\mathrm{B}\left(\frac{{c}}{{a}}\:,\:\mathrm{0}\right)\:\mathrm{and}\:\mathrm{C}\left(\frac{\mathrm{1}\:+\:{c}}{{a}}\:,\:\frac{\mathrm{1}}{{b}}\right) \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{points},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\: \\ $$$$\mathrm{i}.\:\:\frac{\left(\mathrm{AB}\right)^{\mathrm{2}} \:+\:\left(\mathrm{BC}\right)^{\mathrm{2}} }{\left(\mathrm{CA}\right)^{\mathrm{2}} }\:=\:\frac{{c}^{\mathrm{2}} \:+\:\mathrm{1}}{\left({c}\:−\:\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{ii}.\:\left(\mathrm{AB}\right)^{\mathrm{2}} \:+\:\left(\mathrm{BC}\right)^{\mathrm{2}} \:−\:\left(\mathrm{AC}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{2}{c}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}}…

Question-60422

Question Number 60422 by Tawa1 last updated on 20/May/19 Commented by MJS last updated on 20/May/19 $$\mathrm{what}'\mathrm{s}\:\mathrm{a}\:“\mathrm{lidless}\:\mathrm{box}''? \\ $$$$\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:“\mathrm{ends}''\:\mathrm{of}\:\mathrm{a}\:\mathrm{box}? \\ $$ Commented by Tawa1 last…

Question-60423

Question Number 60423 by Tawa1 last updated on 20/May/19 Answered by MJS last updated on 20/May/19 $$\begin{pmatrix}{\mathrm{20}}\\{\angle\mathrm{30}°}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{10}\sqrt{\mathrm{3}}}\\{\mathrm{10}}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{8}}\\{\angle−\mathrm{50}°}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{8sin}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\\{−\mathrm{8cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{10}\sqrt{\mathrm{3}}}\\{\mathrm{10}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{8sin}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\\{−\mathrm{8cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\end{pmatrix}\:\approx\begin{pmatrix}{\mathrm{22}.\mathrm{46}}\\{\mathrm{3}.\mathrm{87}}\end{pmatrix} \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{this}\:\mathrm{vector}\:\mathrm{is}\:\mathrm{22}.\mathrm{79} \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{this}\:\mathrm{vector}\:\mathrm{is}\:\mathrm{E}\:\mathrm{9}.\mathrm{78}°\:\mathrm{N}…

Question-60421

Question Number 60421 by Tawa1 last updated on 20/May/19 Answered by MJS last updated on 20/May/19 $$\eta=\frac{\pi}{\mathrm{8}}×\frac{{pr}^{\mathrm{4}} }{{LQ}} \\ $$$$\eta_{{min}} =\frac{\pi}{\mathrm{8}}×\frac{.\mathrm{97}{p}×\left(.\mathrm{98}{r}\right)^{\mathrm{4}} }{\mathrm{1}.\mathrm{01}{L}×\mathrm{1}.\mathrm{005}{Q}}\approx.\mathrm{881}\frac{\pi{pr}^{\mathrm{4}} }{\mathrm{8}{LQ}} \\ $$$$\eta_{{max}}…