Menu Close

Category: Others

C-2-0-L-ln-R-2-R-1-prove-

Question Number 60219 by ANTARES VY last updated on 19/May/19 $$\boldsymbol{\mathrm{C}}=\frac{\mathrm{2}\boldsymbol{\pi\varepsilon\varepsilon}_{\mathrm{0}} \boldsymbol{\mathrm{L}}}{\boldsymbol{\mathrm{ln}}\left(\frac{\boldsymbol{\mathrm{R}}_{\mathrm{2}} }{\boldsymbol{\mathrm{R}}_{\mathrm{1}} }\right)}. \\ $$$$\boldsymbol{\mathrm{prove}}. \\ $$ Commented by ANTARES VY last updated on…

Two-passenger-trains-A-and-B-450km-apart-start-to-move-towards-each-other-at-the-same-time-and-meet-after-2-hours-If-train-B-travels-8-7-as-fast-as-train-A-find-the-speed-of-each-train-

Question Number 60143 by pete last updated on 18/May/19 $$\mathrm{Two}\:\mathrm{passenger}\:\mathrm{trains},\:\mathrm{A}\:\mathrm{and}\:\mathrm{B},\:\mathrm{450km}\:\mathrm{apart}, \\ $$$$\mathrm{start}\:\mathrm{to}\:\mathrm{move}\:\mathrm{towards}\:\mathrm{each}\:\mathrm{other}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{time}\:\mathrm{and}\:\mathrm{meet}\:\mathrm{after}\:\mathrm{2}\:\mathrm{hours}.\:\mathrm{If}\:\mathrm{train}\:\mathrm{B}, \\ $$$$\mathrm{travels}\:\frac{\mathrm{8}}{\mathrm{7}}\:\mathrm{as}\:\mathrm{fast}\:\mathrm{as}\:\mathrm{train}\:\mathrm{A},\:\mathrm{find}\:\mathrm{the}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{each}\:\mathrm{train}. \\ $$ Answered by tanmay last updated…

Question-60135

Question Number 60135 by Tawa1 last updated on 18/May/19 Answered by tanmay last updated on 18/May/19 $${q}_{\mathrm{1}} =\mathrm{8}.\mathrm{5}×\mathrm{10}^{−\mathrm{6}} {C}\:{at}\:{x}_{\mathrm{1}} =\mathrm{3}.\mathrm{0}×\mathrm{10}^{−\mathrm{2}} {meter} \\ $$$${q}_{\mathrm{2}} =−\mathrm{21}×\mathrm{10}^{−\mathrm{6}} {C}\:{at}\:{x}_{\mathrm{2}}…

1-1-2-1-2-2-1-3-2-1-4-2-1-1-2-1-2-2-1-3-2-

Question Number 125585 by Dwaipayan Shikari last updated on 12/Dec/20 $$\frac{\left(\frac{\mathrm{1}}{\mathrm{1}!}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}!}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{3}!}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}!}\right)^{\mathrm{2}} +…\:}{\left(\frac{\mathrm{1}}{\mathrm{1}!}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}!}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{3}!}\right)^{\mathrm{2}} +……} \\ $$ Commented by Dwaipayan Shikari last…