Menu Close

Category: Others

Question-120118

Question Number 120118 by sarahvalencia last updated on 30/Oct/20 Commented by Dwaipayan Shikari last updated on 29/Oct/20 $${Net}\:{resistance}\:\mathrm{10}{k}\Omega \\ $$$${I}=\frac{\mathrm{50}}{\mathrm{10}.\mathrm{10}^{\mathrm{3}} }=\mathrm{5}×\mathrm{10}^{−\mathrm{3}} {A} \\ $$ Commented…

Question-185553

Question Number 185553 by Noorzai last updated on 23/Jan/23 Answered by Frix last updated on 23/Jan/23 $$\mathrm{3}{a}−\mathrm{5}{b}=\mathrm{0}\:\Rightarrow\:{b}=\frac{\mathrm{3}{a}}{\mathrm{5}} \\ $$$$\mathrm{2}{b}−\mathrm{3}{c}=\mathrm{0}\:\Rightarrow\:{c}=\frac{\mathrm{2}{b}}{\mathrm{3}}=\frac{\mathrm{2}{a}}{\mathrm{5}} \\ $$$$\frac{\mathrm{2}{a}−\frac{\mathrm{12}{a}}{\mathrm{5}}+\mathrm{2}{a}}{\frac{\mathrm{3}{a}}{\mathrm{5}}−\frac{\mathrm{6}{a}}{\mathrm{5}}}=−\frac{\mathrm{8}}{\mathrm{3}} \\ $$ Terms of…

Question-185517

Question Number 185517 by Noorzai last updated on 23/Jan/23 Answered by Ar Brandon last updated on 23/Jan/23 $$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx}+\int_{\mathrm{1}} ^{\infty}…

Find-the-first-four-terms-in-the-expansion-of-x-3-1-x-2-2-2-x-2-in-ascending-power-of-x-M-m-

Question Number 185449 by Mastermind last updated on 22/Jan/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\frac{\mathrm{x}−\mathrm{3}}{\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{in} \\ $$$$\mathrm{ascending}\:\mathrm{power}\:\mathrm{of}\:\mathrm{x}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$…

Write-down-the-expansion-of-a-cosx-b-1-l-x-and-hence-show-that-cosx-1-x-1-x-x-2-2-x-3-2-13x-4-24-M-m-

Question Number 185450 by Mastermind last updated on 22/Jan/23 $$\mathrm{Write}\:\mathrm{down}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{cosx}\:\left(\mathrm{b}\right)\:\frac{\mathrm{1}}{\mathrm{l}+\mathrm{x}},\:\mathrm{and}\:\mathrm{hence}\:\mathrm{show} \\ $$$$\mathrm{that}\:\frac{\mathrm{cosx}}{\mathrm{1}+\mathrm{x}}\:=\:\mathrm{1}−\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{\mathrm{13x}^{\mathrm{4}} }{\mathrm{24}}+… \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$…