Question Number 184832 by Mastermind last updated on 12/Jan/23 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{acceleration}\: \\ $$$$\mathrm{a}=−\mathrm{4sin2t},\:\mathrm{initial}\:\mathrm{velocity}\: \\ $$$$\mathrm{v}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{and}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{position}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{as}\:\mathrm{s}\left(\mathrm{0}\right)=−\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{body}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t}. \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$ Commented…
Question Number 53736 by Mikael_Marshall last updated on 25/Jan/19 $$\sqrt{\mathrm{32}+\mathrm{10}\sqrt{\mathrm{7}}}+\sqrt{\mathrm{32}−\mathrm{10}\sqrt{\mathrm{7}}}=? \\ $$ Commented by Kunal12588 last updated on 25/Jan/19 $${just}\:{want}\:{to}\:{add}\:{something} \\ $$$$\sqrt{{m}+\sqrt{{n}\:}}\:{getting}\:{square}\:{root}\:{of}\:{a}\:{surd} \\ $$$$\sqrt{{m}+\sqrt{{n}}}=\sqrt{{a}}+\sqrt{{b}} \\…
Question Number 53740 by F_Nongue last updated on 25/Jan/19 $${please}\:{help}\:{me}\:{to}\:{solve}\:{this}\: \\ $$$${sistem}: \\ $$$$\begin{cases}{{log}_{\mathrm{2}} \left({x}+\mathrm{2}{y}\right)−{log}_{\mathrm{3}} \left({x}−\mathrm{2}{y}\right)=\mathrm{2}}\\{{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} =\mathrm{4}}\end{cases} \\ $$ Answered by Smail last updated…
Question Number 184787 by Mastermind last updated on 11/Jan/23 $$\mathrm{x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{256x}+\mathrm{256}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}? \\ $$ Commented by MJS_new last updated on…
Question Number 53688 by kwonjun1202 last updated on 25/Jan/19 $${i}^{{i}\:} \:?? \\ $$$${Whis}\:{is}\:{it},,\:{plz}\:{explain}\:{it} \\ $$$${i}=\sqrt{−\mathrm{1}} \\ $$ Commented by Abdo msup. last updated on 25/Jan/19…
Question Number 184744 by Salimatshitu last updated on 11/Jan/23 $${given}\:{that}\:{the}\:\mathrm{5}{th}\:{term}\:{of}\:{an}\:{AP}\:{is}\:{more}\:{than}\:{its}\:{firs}\:{term}\:{by}\:\mathrm{12}.\:{and}\:{the}\:\mathrm{6}{th}\:{term}\:{is}\:{more}\:{than}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}.\:{find}\:{the}\:{fist}\:{term}?\:{common}\:{difference}\:{and}\:\mathrm{100}{th}\:{term} \\ $$$$ \\ $$ Commented by mr W last updated on 11/Jan/23 $${please}\:{don}'{t}\:{write}\:{the}\:{whole}\:{question} \\ $$$${in}\:{a}\:{single}\:{line}!\:{use}\:{line}\:{breaks}!…
Question Number 184731 by Mastermind last updated on 11/Jan/23 $$\mathrm{Express}\:\mathrm{this}\:\mathrm{function}\:\mathrm{in}\:\mathrm{both}\:\mathrm{its} \\ $$$$\mathrm{Cartesian}\:\mathrm{and}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{ze}^{\mathrm{iz}} . \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$ Answered by…
Question Number 53619 by kaivan.ahmadi last updated on 23/Jan/19 $$\mathrm{If}\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{cosnsin}\left(\mathrm{na}\right)}{\mathrm{n}}\:\mathrm{is}\:\mathrm{converge}\:\mathrm{then}\:\mathrm{a}\:\mathrm{is}? \\ $$$$\mathrm{1}.\:\mathrm{a}\in\mathbb{Z} \\ $$$$\mathrm{2}.\:\mathrm{a}\in\left\{\mathrm{k}\pi:\mathrm{k}\in\mathbb{Z}\right\} \\ $$$$\mathrm{3}.\:\mathrm{a}\in\mathbb{R}−\left\{\frac{\mathrm{2k}+\mathrm{1}}{\mathrm{2}}\pi:\mathrm{k}\in\mathbb{Z}\right\} \\ $$$$\mathrm{4}.\:\mathrm{a}\in\mathbb{R} \\ $$$$ \\ $$ Terms…
Question Number 184656 by Mastermind last updated on 10/Jan/23 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{whose}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{are}\:\overset{−} {\mathrm{A}}\:\mathrm{and}\:\overset{−} {\mathrm{B}}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{2}}\mid\mathrm{A}×\mathrm{B}\mid. \\ $$$$\mathrm{Also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{direction}−\mathrm{cosine} \\ $$$$\mathrm{of}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{this}\:\mathrm{area}. \\ $$$$ \\ $$$$ \\…
Question Number 184655 by Mastermind last updated on 10/Jan/23 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{inscribe}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{semi}−\mathrm{circle}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$ Answered by HeferH last updated…