Question Number 184028 by Rasheed.Sindhi last updated on 02/Jan/23 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{H}}^{\boldsymbol{\mathrm{A}}^{\boldsymbol{\mathrm{P}}} \boldsymbol{\mathrm{P}}} \boldsymbol{\mathrm{Y}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Y}}_{\boldsymbol{\mathrm{E}}_{\boldsymbol{\mathrm{A}}} \boldsymbol{\mathrm{R}}} \:! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overline {\lfloor\boldsymbol{\mathrm{e}}\rfloor\lfloor\boldsymbol{\mathrm{i}}-\boldsymbol{\mathrm{i}}\rfloor\lfloor\boldsymbol{\mathrm{e}}\rfloor\lfloor\boldsymbol{\pi}\rfloor}\:\: \\ $$ Terms of…
Question Number 184030 by Mastermind last updated on 02/Jan/23 $$\mathrm{How}\:\mathrm{many}\:\mathrm{words}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made}\: \\ $$$$\mathrm{from}\:\mathrm{5}\:\mathrm{letters}\:\mathrm{if} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{all}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{different} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{2}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{identical} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{all}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{different}\:\mathrm{but}\:\mathrm{2} \\ $$$$\mathrm{partucular}\:\mathrm{letters}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{adjacent}. \\ $$$$ \\…
Question Number 184010 by Rasheed.Sindhi last updated on 01/Jan/23 $$\:\:\:\:\:\:\:\:\:\:\underset{\:\underset{\underset{\underset{\underset{\underset{\bullet} {\bullet}} {\boldsymbol{\mathrm{by}}}} {\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{divisible}}}} {\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{number}}}} {\boldsymbol{\mathrm{is}}^{\:} }} {\begin{array}{|c|}{\:\begin{array}{|c|}{\mathrm{2023}}\\\hline\end{array}\:}\\\hline\end{array}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{digits}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\& \\ $$$$\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{squares}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{digits}} \\ $$…
Question Number 52859 by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19 Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19 Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19 $${Here}\:{T}_{\mathrm{2}} >{T}_{\mathrm{1}}…
Question Number 183913 by Tawa11 last updated on 31/Dec/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 52818 by Tawa1 last updated on 13/Jan/19 Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19 $${V}_{{cart}} =\mathrm{4}{i} \\ $$$$\left({V}^{} \right)_{{cart}} ^{{stone}} ={velocity}\:{of}\:{stone}\:{w}.{r}.{t}\:{man}\left({cart}\right) \\ $$$${V}_{{cart}}…
Question Number 118323 by Dwaipayan Shikari last updated on 16/Oct/20 $${Prove}\:{that}\: \\ $$$$\zeta\left(\mathrm{1}−{s}\right)=\mathrm{2}^{\mathrm{1}−{s}} \pi^{−{s}} {cos}\left(\frac{{s}\pi}{\mathrm{2}}\right)\Gamma\left({s}\right)\zeta\left({s}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 52713 by F_Nongue last updated on 12/Jan/19 $${if}\:\mid{x}\mid=\mid{y}\mid\:{is}\:\frac{{x}}{{y}}=−\mathrm{1}? \\ $$ Commented by maxmathsup by imad last updated on 12/Jan/19 $${if}\:{x}\:{and}\:{y}\:{real}\:\:\:\mid{x}\mid=\mid{y}\mid\:\Leftrightarrow\mid\frac{{x}}{{y}}\mid=\mathrm{1}\:\Leftrightarrow\frac{{x}}{{y}}\:=\mathrm{1}\:{or}\:\frac{{x}}{{y}}\:=−\mathrm{1}\:\left({we}\:{suppose}\:{y}\neq\mathrm{0}\right) \\ $$$${if}\:{xand}\:{y}\:{from}\:{C}\:\:\mid{x}\mid=\mid{y}\mid\:\Leftrightarrow\mid\frac{{x}}{{y}}\:\mid=\mathrm{1}\:\Leftrightarrow\:\exists\theta\:\in{R}\:/\:{x}={y}\:{e}^{{i}\theta} \:\:\:.…
Question Number 183737 by Michaelfaraday last updated on 29/Dec/22 Answered by Frix last updated on 29/Dec/22 $$\mathrm{mod}\:\left(\mathrm{2222}^{\mathrm{6}{k}} ;\:\mathrm{7}\right)\:=\mathrm{1} \\ $$$$\mathrm{mod}\:\left(\mathrm{2222}^{\mathrm{6}{k}+\mathrm{1}} ;\:\mathrm{7}\right)\:=\mathrm{3} \\ $$$$\mathrm{mod}\:\left(\mathrm{2222}^{\mathrm{6}{k}+\mathrm{2}} ;\:\mathrm{7}\right)\:=\mathrm{2} \\…
Question Number 52655 by Tawa1 last updated on 10/Jan/19 Terms of Service Privacy Policy Contact: info@tinkutara.com