Menu Close

Category: Others

Classsify-the-critical-points-of-the-function-f-x-y-x-2-y-1-3-y-3-x-2-y-2-2-Thank-you-in-advance-

Question Number 203858 by Mastermind last updated on 30/Jan/24 $$\mathrm{Classsify}\:\mathrm{the}\:\mathrm{critical}\:\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{y}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance}! \\ $$ Commented…

Show-that-the-surface-z-xy-has-neither-a-maximum-nor-a-minimum-point-

Question Number 203859 by Mastermind last updated on 30/Jan/24 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{surface}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{z}\:=\:\mathrm{xy} \\ $$$$\mathrm{has}\:\mathrm{neither}\:\mathrm{a}\:\mathrm{maximum}\:\mathrm{nor}\:\mathrm{a}\:\mathrm{minimum}\:\mathrm{point} \\ $$ Commented by AST last updated on 30/Jan/24 $${For}\:{x},{y}\rightarrow\infty;\:{z}\rightarrow\infty \\…

Question-203750

Question Number 203750 by patrice last updated on 27/Jan/24 Answered by witcher3 last updated on 27/Jan/24 $$\frac{\mathrm{4}\left(\mathrm{k}+\mathrm{2}\right)−\mathrm{k}}{\mathrm{k}\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\frac{\mathrm{4}}{\mathrm{k}.\mathrm{2}^{\mathrm{k}} }−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\frac{\mathrm{1}}{\mathrm{k}.\mathrm{2}^{\mathrm{k}−\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\mathrm{V}_{\mathrm{k}} −\mathrm{V}_{\mathrm{k}+\mathrm{2}} \\ $$$$\mathrm{s}_{\mathrm{n}}…

Question-203701

Question Number 203701 by Noorzai last updated on 26/Jan/24 Answered by mr W last updated on 26/Jan/24 $$\mathrm{0}<\frac{\mathrm{2}^{{x}} }{{x}!}=\frac{\mathrm{2}×\mathrm{2}×\mathrm{2}×\mathrm{2}×….×\mathrm{2}}{\mathrm{1}×\mathrm{2}×\mathrm{3}×\mathrm{4}×…×{x}}<\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} \\ $$$$\mathrm{0}<\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{{x}} }{{x}!}<\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} =\mathrm{0}…

Question-203695

Question Number 203695 by Numsey last updated on 26/Jan/24 Commented by BaliramKumar last updated on 26/Jan/24 $$\mathrm{Step}\:\mathrm{III}\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{27}\right)}\left(\mathrm{1}.\mathrm{5}\right) \\ $$ Terms of Service Privacy Policy Contact:…