Menu Close

Category: Others

find-the-laplace-transform-of-0-te-2t-sintdt-

Question Number 219519 by OmoloyeMichael last updated on 27/Apr/25 $$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{laplace}}\:\boldsymbol{{transform}}\:\boldsymbol{{of}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \boldsymbol{{te}}^{−\mathrm{2}\boldsymbol{{t}}} \boldsymbol{{sintdt}} \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$\mathrm{First}\:\mathrm{idea}..\mathrm{Let}'\mathrm{s}\:\mathrm{define}\:{F}\left({s}\right)\:\mathrm{as}\:…

find-the-laplace-transform-of-f-t-0-t-sint-t-dt-

Question Number 219520 by OmoloyeMichael last updated on 27/Apr/25 $$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{laplace}}\:\boldsymbol{{transform}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\int_{\mathrm{0}} ^{\boldsymbol{{t}}} \frac{\boldsymbol{{sint}}}{\boldsymbol{{t}}}\boldsymbol{{dt}} \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$\int_{\mathrm{0}} ^{\:{T}}…

Question-219486

Question Number 219486 by OmoloyeMichael last updated on 26/Apr/25 Commented by OmoloyeMichael last updated on 26/Apr/25 $$\boldsymbol{{please}}\:\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{with}}\:\boldsymbol{{question}}\:\mathrm{4} \\ $$ Terms of Service Privacy Policy Contact:…

solve-the-initial-value-problem-y-2e-t-2-2ty-0-y-0-1-

Question Number 219488 by OmoloyeMichael last updated on 26/Apr/25 $$\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{initial}}\:\boldsymbol{{value}}\:\boldsymbol{{problem}}\: \\ $$$$\boldsymbol{{y}}'−\mathrm{2}\boldsymbol{{e}}^{−\boldsymbol{{t}}^{\mathrm{2}} } +\mathrm{2}\boldsymbol{{ty}}=\mathrm{0}\:\:\boldsymbol{{y}}\left(\mathrm{0}\right)=\mathrm{1} \\ $$ Answered by SdC355 last updated on 26/Apr/25 $$\frac{\mathrm{d}{y}}{\mathrm{d}{t}}+\mathrm{2}{ty}\left({t}\right)=\mathrm{2}{e}^{−{t}^{\mathrm{2}} }…

if-x-2x-10x-e-2t-at-t-0-x-0-and-x-1-find-x-t-using-laplace-transform-

Question Number 219491 by OmoloyeMichael last updated on 26/Apr/25 $$\boldsymbol{{if}}\:\boldsymbol{{x}}''−\mathrm{2}\boldsymbol{{x}}'+\mathrm{10}\boldsymbol{{x}}=\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{t}}} ,\:\boldsymbol{{at}}\:\boldsymbol{{t}}=\mathrm{0},\boldsymbol{{x}}=\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{x}}'=\mathrm{1} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{x}}\left(\boldsymbol{{t}}\right)\:\boldsymbol{{using}}\:\boldsymbol{{laplace}}\:\boldsymbol{{transform}} \\ $$ Answered by mahdipoor last updated on 26/Apr/25 $${Laplace}\:\Rightarrow \\ $$$$\left({Xs}^{\mathrm{2}}…