Question Number 52240 by aghoelvis511@gmail.com last updated on 05/Jan/19 $${i}={what}\:{in}\:{complex}\:{number}. \\ $$ Commented by Tawa1 last updated on 05/Jan/19 $$\boldsymbol{\mathrm{i}}\:\:=\:\:\boldsymbol{\mathrm{iota}} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{i}}\:\:=\:\:\boldsymbol{\mathrm{cos}}\:\frac{\pi}{\mathrm{2}}\:+\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{sin}}\:\frac{\pi}{\mathrm{2}} \\…
Question Number 52223 by Tawa1 last updated on 04/Jan/19 Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19 Commented by Tawa1 last updated on 05/Jan/19 $$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\…
Question Number 52221 by gunawan last updated on 04/Jan/19 $${a}_{{n}} =\sqrt{{a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} } \\ $$$${a}_{\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{find}\:\mathrm{explisit}\:\mathrm{to}\:{a}_{{n}} \\ $$ Terms of…
Question Number 52214 by Tawa1 last updated on 04/Jan/19 Commented by Tawa1 last updated on 04/Jan/19 $$\mathrm{Evaluate} \\ $$ Commented by mr W last updated…
Question Number 52206 by SUJIT420 last updated on 04/Jan/19 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{1}/{x}} −{c}}{{x}}=−\frac{{c}}{\mathrm{2}} \\ $$ Commented by afachri last updated on 04/Jan/19 $$\mathrm{is}\:\mathrm{it}\:{e}\:?\:\mathrm{or}\:\mathrm{C}\:\mathrm{Sir}\:??\: \\ $$$$\mathrm{i}\:\mathrm{am}\:\mathrm{thinking}\:\mathrm{if}\:\mathrm{that}\:\mathrm{C},\:\mathrm{i}\:\mathrm{find}\:\mathrm{the}\:\mathrm{eqn} \\…
Question Number 183209 by Mastermind last updated on 23/Dec/22 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{Differential}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\frac{\mathrm{d}^{\mathrm{3}} \mathrm{y}}{\mathrm{dx}^{\mathrm{3}} }+\mathrm{8}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{12}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$ Answered…
Question Number 52140 by ajfour last updated on 03/Jan/19 Commented by ajfour last updated on 03/Jan/19 $${Find}\:{side}\:\boldsymbol{{s}}\:{of}\:{the}\:{equilateral} \\ $$$${triangles}\:{possible}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}\:\&\:\boldsymbol{{R}}. \\ $$$${For}\:{what}\:{maximum}\:{value}\:{of}\:\boldsymbol{{a}}_{\mathrm{0}} \\ $$$${is}\:{such}\:\:{triangle}\:{possible}.\:{What}\:{is} \\ $$$${the}\:{side}\:\boldsymbol{{s}}\:{for}\:{this}\:{value}\:{of}\:\boldsymbol{{a}}_{\mathrm{0}}…
Question Number 183211 by Mastermind last updated on 23/Dec/22 $$\mathrm{y}^{\left(\mathrm{iv}\right)} +\mathrm{16y}^{\left(\mathrm{iii}\right)} +\mathrm{9y}^{\left(\mathrm{ii}\right)} +\mathrm{256y}^{\left(\mathrm{i}\right)} +\mathrm{256y}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$ Answered by aleks041103…
Question Number 183210 by Mastermind last updated on 23/Dec/22 $$\frac{\mathrm{d}^{\mathrm{3}} \mathrm{y}}{\mathrm{dx}^{\mathrm{3}} }+\mathrm{4}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{6y}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$ Answered by aleks041103…
Question Number 117645 by Ghie last updated on 13/Oct/20 Answered by prakash jain last updated on 13/Oct/20 $$\mathrm{100}{x} \\ $$ Terms of Service Privacy Policy…