Menu Close

Category: Permutation and Combination

f-1-3-R-f-x-1-x-A-1-1-B-1-1-3-B-b-1-b-b-1-Find-i-equation-of-line-AB-ii-equation-of-tangent-T-to-C-f-at-point-with-x-1-b-2-iii-Study-relative-positions-of-L-

Question Number 190260 by alcohol last updated on 30/Mar/23 $${f}\::\:\left[\mathrm{1},\:\mathrm{3}\right]\:\rightarrow\mathbb{R}\:,\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${A}\left(\mathrm{1},\:\mathrm{1}\right) \\ $$$${B}\left(\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${B}'\left({b},\:\frac{\mathrm{1}}{{b}}\right)\:,\:{b}\:\geqslant\:\mathrm{1} \\ $$$${Find} \\ $$$${i}.\:{equation}\:{of}\:{line}\:{AB}' \\ $$$${ii}.\:{equation}\:{of}\:{tangent}\:{T}\:'\:{to}\:{C}_{{f}} \:{at}\:{point} \\ $$$${with}\:{x}\:=\:\frac{\mathrm{1}\:+\:{b}}{\mathrm{2}}…

In-how-many-ways-can-5-boys-and-3-girls-be-seated-around-a-table-if-i-boy-B-3-and-G-2-are-not-adjacent-ii-no-girls-are-adjacent-

Question Number 124712 by benjo_mathlover last updated on 05/Dec/20 $${In}\:{how}\:{many}\:{ways}\:\:{can}\:\mathrm{5}\:{boys}\:{and}\:\mathrm{3}\:{girls} \\ $$$${be}\:{seated}\:{around}\:{a}\:{table}\:{if}\: \\ $$$$\left({i}\right)\:{boy}\:{B}_{\mathrm{3}} \:{and}\:{G}_{\mathrm{2}} \:{are}\:{not}\:{adjacent} \\ $$$$\left({ii}\right)\:{no}\:{girls}\:{are}\:{adjacent}\: \\ $$ Answered by liberty last updated…

Between-20000-and-70000-find-the-number-of-even-integers-in-which-no-digits-is-repeated-

Question Number 124709 by benjo_mathlover last updated on 05/Dec/20 $${Between}\:\mathrm{20000}\:{and}\:\mathrm{70000}\: \\ $$$${find}\:{the}\:{number}\:{of}\:{even}\:{integers} \\ $$$${in}\:{which}\:{no}\:{digits}\:{is}\:{repeated} \\ $$ Answered by liberty last updated on 05/Dec/20 $${Let}\:{abcde}\:{be}\:{a}\:{required}\:{even}\:{integer}.\: \\…

Q58885-reposted-How-many-4-digit-numbers-abcd-exist-which-are-divisible-by-3-and-satisfy-a-b-c-d-

Question Number 59021 by mr W last updated on 03/May/19 $$\left[{Q}\mathrm{58885}\:{reposted}\right] \\ $$$${How}\:{many}\:\mathrm{4}−{digit}\:{numbers}\:{abcd}\:{exist} \\ $$$${which}\:{are}\:{divisible}\:{by}\:\mathrm{3}\:{and}\:{satisfy} \\ $$$${a}\leqslant{b}\leqslant{c}\leqslant{d}? \\ $$ Commented by tanmay last updated on…

Question-124173

Question Number 124173 by bramlexs22 last updated on 01/Dec/20 Answered by bobhans last updated on 01/Dec/20 $$\left(\mathrm{1}+{kx}\right)\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{5}} \:=\:\left(\mathrm{1}+{kx}\right)\left[\underset{{n}=\mathrm{0}} {\overset{\mathrm{5}} {\sum}}{C}_{{n}} ^{\:\mathrm{5}} \left(−\mathrm{2}{x}\right)^{\mathrm{5}−{n}} \:\right] \\ $$$$=\left(\mathrm{1}+{kx}\right)\left({C}_{\mathrm{3}}…

Question-189614

Question Number 189614 by Rupesh123 last updated on 19/Mar/23 Answered by Frix last updated on 19/Mar/23 $${a}=\mathrm{2}{m}−\mathrm{1}\wedge\mathrm{1}\leqslant{m}\leqslant\mathrm{14}\wedge{b}=\mathrm{2}{n}−\mathrm{1}\wedge{m}+\mathrm{1}\leqslant{n}\leqslant\mathrm{15} \\ $$$${a}=\mathrm{2}{m}\wedge\mathrm{1}\leqslant{m}\leqslant\mathrm{14}\wedge{b}=\mathrm{2}{n}\wedge{m}+\mathrm{1}\leqslant{n}\leqslant\mathrm{15} \\ $$$$\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\mathrm{14}} {\sum}}{k}=\mathrm{210} \\ $$…