Menu Close

Category: Permutation and Combination

In-how-many-ways-can-4-boys-and-3-girls-stand-in-a-straight-line-a-if-there-are-no-restrictions-b-if-the-boys-stand-next-to-each-other-

Question Number 56212 by pieroo last updated on 12/Mar/19 $$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{4}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{3}\:\mathrm{girls} \\ $$$$\mathrm{stand}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{a}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{restrictions} \\ $$$$\mathrm{b}.\:\mathrm{if}\:\mathrm{the}\:\mathrm{boys}\:\mathrm{stand}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 12/Mar/19…

Find-the-probability-that-a-student-arranging-the-letters-of-the-word-MATHEMATICS-will-make-all-the-vowels-be-together-in-any-arrangement-he-or-she-does-

Question Number 56025 by pieroo last updated on 08/Mar/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{student} \\ $$$$\mathrm{arranging}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word} \\ $$$$\mathrm{MATHEMATICS}\:\mathrm{will}\:\mathrm{make}\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{vowels}\:\mathrm{be}\:\mathrm{together}\:\mathrm{in}\:\mathrm{any}\:\mathrm{arrangement} \\ $$$$\mathrm{he}\:\mathrm{or}\:\mathrm{she}\:\mathrm{does}. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated…

shown-that-n-k-0-n-1-k-k-n-n-k-n-please-help-me-

Question Number 120954 by cantor last updated on 04/Nov/20 $$\boldsymbol{{shown}}\:\boldsymbol{{that}} \\ $$$$ \\ $$$$\:\:\:\boldsymbol{{n}}!=\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\boldsymbol{{n}}} {\sum}}\left(−\mathrm{1}\right)^{\boldsymbol{{k}}} \left(_{\:\boldsymbol{{k}}} ^{\:\boldsymbol{{n}}} \right)\left(\boldsymbol{{n}}−\boldsymbol{{k}}\right)^{\boldsymbol{{n}}} \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{help}}\:\boldsymbol{{me}} \\ $$ Terms of…

How-many-numbers-divisible-by-5-can-be-made-with-the-digits-2-3-4-and-5-where-no-digit-is-being-used-more-than-once-in-each-number-

Question Number 55119 by pieroo last updated on 17/Feb/19 $$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers},\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{5},\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{made}\:\mathrm{with}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{2},\mathrm{3},\mathrm{4}\:\mathrm{and}\:\mathrm{5}\:\mathrm{where} \\ $$$$\mathrm{no}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{being}\:\mathrm{used}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once} \\ $$$$\mathrm{in}\:\mathrm{each}\:\mathrm{number}? \\ $$ Commented by Tawa1 last updated on 17/Feb/19…

Show-that-for-n-N-r-0-n-P-r-n-n-e-where-x-denotes-the-greatest-integer-x-and-P-r-n-n-n-r-

Question Number 55099 by Joel578 last updated on 17/Feb/19 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:{n}\:\in\:\mathbb{N}, \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{P}_{{r}} ^{{n}} \:=\:\lfloor{n}!\:{e}\rfloor \\ $$$$\mathrm{where}\:\lfloor{x}\rfloor\:\mathrm{denotes}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\leqslant\:{x} \\ $$$$\mathrm{and}\:{P}_{{r}} ^{{n}} \:=\:\frac{{n}!}{\left({n}\:−\:{r}\right)!} \\ $$ Answered…